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Uncertainpy is a python toolbox for uncertainty quantification and sensitivity analysis tailored towards computational
neuroscience.

Uncertainpy is model independent and treats the model as a black box where the model can be left unchanged. Uncer-
tainpy implements both quasi-Monte Carlo methods and polynomial chaos expansions using either point collocation
or the pseudo-spectral method. Both of the polynomial chaos expansion methods have support for the rosenblatt
transformation to handle dependent input parameters.

Uncertainpy is feature based, i.e., if applicable, it recognizes and calculates the uncertainty in features of the model,
as well as the model itself. Examples of features in neuroscience can be spike timing and the action potential shape.

Uncertainpy is tailored towards neuroscience models, and comes with several common neuroscience models and
features built in, but new models and features can easily be implemented. It should be noted that while Uncertainpy
is tailored towards neuroscience, the implemented methods are general, and Uncertainpy can be used for many other
types of models and features within other fields.
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CHAPTER 1

Installation

Uncertainpy works with with Python 3. Uncertainpy can easily be installed using pip. The minimum install is:

pip install uncertainpy

To install all requirements you can write:

pip install uncertainpy[all]

Specific optional requirements can also be installed, see below for an explanation. Uncertainpy can also be installed
by cloning the Github repository:

$ git clone https://github.com/simetenn/uncertainpy
$ cd /path/to/uncertainpy
$ python setup.py install

setup.py are able to install different set of dependencies. For all options run:

$ python setup.py --help

Alternatively, Uncertainpy can be easily installed (minimum install) with conda using conda-forge channel:

$ conda install -c conda-forge uncertainpy

The above installation, within a conda environment, is only compatible with Python 3.x.

1.1 Dependencies

Uncertainpy has the following dependencies:

• chaospy

• tqdm

• h5py

• multiprocess

3
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• numpy

• scipy

• seaborn

• matplotlib

• xvfbwrapper

• six

• SALib

• exdir

These are installed with the minimum install.

xvfbwrapper requires xvfb, which can be installed with:

sudo apt-get install xvfb

Additionally Uncertainpy has a few optional dependencies for specific classes of models and for features of the models.

1.1.1 EfelFeatures

uncertainpy.EfelFeatures requires the Python package

• efel

which can be installed with:

pip install uncertainpy[efel_features]

or:

pip install efel

or through:

python setup.py install --efel_features

1.1.2 NetworkFeatures

uncertainpy.NetworkFeatures requires the Python packages

• elephant

• neo

• quantities

which can be installed with:

pip install uncertainpy[network_features]

or:

pip install elephant, neo, quantities

or through:

4 Chapter 1. Installation
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python setup.py install --network_features

1.1.3 NeuronModel

uncertainpy.NeuronModel requires the external simulator NEURON (with Python), a simulator for neurons.
NEURON must be installed by the user.

1.1.4 NestModel

uncertainpy.NestModel requires the external simulator NEST (with Python), a simulator for network of neu-
rons. NEST must be installed by the user.

1.2 Test suite

Uncertainpy comes with an extensive test suite that can be run with the test.py script. For how to use test.py
run:

$ python test.py --help

test.py has all the above dependencies in addition to:

• click

These dependencies can be installed with:

pip install uncertainpy[tests]

or:

pip install click

or through:

python setup.py install --tests

1.3 Documentation

The documentation is generated through sphinx, and has the following dependencies:

• sphinx

• sphinx_rtd_theme

These dependencies can be installed with:

pip install uncertainpy[docs]

or:

pip install sphinx, sphinx_rtd_theme

or through:

1.2. Test suite 5
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python setup.py install --docs

The documentation is build by:

cd docs
make html

6 Chapter 1. Installation



CHAPTER 2

Quickstart

This section gives a brief overview of what you need to know to perform an uncertainty quantification and sensitivity
analysis with Uncertainpy. It only gives the most basic way of getting started, many more options than shown here are
available.

The uncertainty quantification and sensitivity analysis includes three main components:

• The model we want to examine.

• The parameters of the model.

• Specifications of features in the model output.

The model and the parameters are required, while the feature specification is optional. The above components are
brought together in the UncertaintyQuantification class. This class is the main class to interact with, and is a wrapper
for the uncertainty calculations.

2.1 Uncertainty quantification

The UncertaintyQuantification class is used to define the problem, perform the uncertainty quantification, and to save
and visualize the results. Among others, UncertaintyQuantification takes the following arguments:

UQ = un.UncertaintyQuantification(
model=..., # Required
parameters=..., # Required
features=..., # Optional

)

The arguments are given as instances of their corresponding Uncertainpy classes (Models, Parameters, and Features).
These classes are briefly described below. After the problem is defined, an uncertainty quantification and sensitiv-
ity analysis can be performed using the UncertaintyQuantification.quantify method. Among others,
quantify takes the following arguments:

7



Uncertainpy Documentation, Release 1.2.3

data = UQ.quantify(
method="pc"``"mc",
pc_method="collocation"``"spectral",
rosenblatt=False``True

)

The method argument allows the user to choose whether Uncertainpy should use polynomial chaos ("pc") or quasi-
Monte carlo ("mc") methods to calculate the relevant statistical metrics. If polynomial chaos are chosen, pc_method
further specifies whether point collocation ("collocation") or spectral projection ("spectral") methods is
used to calculate the expansion coefficients. Finally, rosenblatt (False or True) determines if the Rosenblatt trans-
formation should be used. The Rosenblatt is required if the uncertain parameters are dependent. If nothing is specified,
Uncertainpy by default uses polynomial chaos based on point collocation without the Rosenblatt transformation. The
results from the uncertainty quantification are automatically saved and plotted. Additionally, the results from the
uncertainty quantification are returned in data, as a Data object (see Data).

2.2 Models

The easiest way to create a model is to use a Python function. We need a Python function that runs a simulation on a
specified model for a given set of model parameters, and returns the simulation output. An example outline of a model
function is:

def example_model(parameter_1, parameter_2):
# An algorithm for the model, or a script that runs
# an external model, using the given input parameters.

# Returns the model output and model time
# along with the optional info object.
return time, values, info

Such a model function can be given as the model argument to the UncertaintyQuantification class. Note
that sometimes an features or the preprocessing requires that additional info object is required to be returned from the
model.

For more on models see Models.

2.3 Parameters

The parameters of a model are defined by two properties, they must have (i) a name and (ii) either a fixed value or
a distribution. It is important that the name of the parameter is the same as the name given as the input argument in
the model function. A parameter is considered uncertain if it has a probability distribution, and the distributions are
given as Chaospy distributions. 64 different univariate distributions are defined in Chaospy. For a list of available
distributions and detailed instructions on how to create probability distributions with Chaospy, see Section 3.3 in the
Chaospy paper.

parameters is a dictionary with the above information, the names of the parameters are the keys, and the fixed values
or distributions of the parameters are the values. As an example, if we have two parameters, where the first is named
name_1 and has a uniform probability distributions in the interval [8, 16], and the second is named name_2 and has
a fixed value 42, the list become:

import chaospy as cp
parameters = {"name_1": cp.Uniform(8, 16), "name_2": 42}

8 Chapter 2. Quickstart
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The parameter argument in UncertaintyQuantification is such a dictionary.

For more on parameters see Parameters.

2.4 Features

Features are specific traits of the model output, and Uncertainpy has support for performing uncertainty quantification
and sensitivity analysis of features of the model output, in addition to the model output itself. Features are defined by
creating a Python function to calculate a specific feature from the model output. The feature function take the items
returned by the model as as input arguments, calculates a specific feature of this model output and returns the results.
quantification on.

The outline for a feature function is:

def example_feature(time, values, info):
# Calculate the feature using time, values and info.

# Return the feature times and values.
return time_feature, values_feature

The features argument to UncertaintyQuantification can be given as a list of feature functions we want to
examine.

For more on features see Features.

2.4. Features 9
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CHAPTER 3

Examples

This is a collection of examples that shows the use of Uncertainpy for a few different case studies.

3.1 A cooling coffee cup model

Here we show an example (found in examples/coffee_cup) where we examine the changes in temperature of a
cooling coffee cup that follows Newton’s law of cooling:

𝑑𝑇 (𝑡)

𝑑𝑡
= −𝜅(𝑇 (𝑡) − 𝑇𝑒𝑛𝑣)

This equation tells how the temperature 𝑇 of the coffee cup changes with time 𝑡, when it is in an environment with
temperature 𝑇𝑒𝑛𝑣 . 𝜅 is a proportionality constant that is characteristic of the system and regulates how fast the coffee
cup radiates heat to the environment. For simplicity we set the initial temperature to a fixed value, 𝑇0 = 95∘C, and let
𝜅 and 𝑇𝑒𝑛𝑣 be uncertain parameters. We give the uncertain parameters in the following distributions:

𝜅 = Uniform(0.025, 0.075),

𝑇𝑒𝑛𝑣 = Uniform(15, 25).

3.1.1 Using a function

There are two approaches to creating the model, using a function or a class. The function method is easiest
so we start with that approach. The complete for this example can be found in examples/coffee_cup/
uq_coffee_function.py. We start by importing the packages we use:

import uncertainpy as un
import chaospy as cp # To create distributions
import numpy as np # For the time array
from scipy.integrate import odeint # To integrate our equation

To create the model we define a Python function coffee_cup that takes the uncertain parameters kappa and T_env
as input arguments. Inside this function we solve our equation by integrating it using scipy.integrate.odeint,
before we return the results. The implementation of the model function is:

11
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# Create the coffee cup model function
def coffee_cup(kappa, T_env):

# Initial temperature and time array
time = np.linspace(0, 200, 150) # Minutes
T_0 = 95 # Celsius

# The equation describing the model
def f(T, time, kappa, T_env):

return -kappa*(T - T_env)

# Solving the equation by integration
temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

# Return time and model output
return time, temperature

We could use this function directly in UncertaintyQuantification, but we would like to have labels on the
axes when plotting. So we create a Model with the above run function and labels:

# Create a model from the coffee_cup function and add labels
model = un.Model(run=coffee_cup, labels=["Time (min)", "Temperature (C)"])

The next step is to define the uncertain parameters. We use Chaospy to create the distributions, and create a parameter
dictionary:

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameter dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

We can now calculate the uncertainty and sensitivity using polynomial chaos expansions with point collocation, which
is the default option of quantify. We set the seed to easier be able to reproduce the result.

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

The complete code becomes:

import uncertainpy as un
import chaospy as cp # To create distributions
import numpy as np # For the time array
from scipy.integrate import odeint # To integrate our equation

# Create the coffee cup model function
def coffee_cup(kappa, T_env):

# Initial temperature and time array
time = np.linspace(0, 200, 150) # Minutes
T_0 = 95 # Celsius

(continues on next page)
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(continued from previous page)

# The equation describing the model
def f(T, time, kappa, T_env):

return -kappa*(T - T_env)

# Solving the equation by integration
temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

# Return time and model output
return time, temperature

# Create a model from the coffee_cup function and add labels
model = un.Model(run=coffee_cup, labels=["Time (min)", "Temperature (C)"])

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameter dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

3.1.2 Using a class

The model can also be created as a class instead of using a function. Most of the code is unchanged. The complete
for this example is in examples/coffee_cup/uq_coffee_class.py. We create a class that inherits from
Model. To add the labels we call on the constructor of the parent class and give it the labels.

# Create the coffee cup model
class CoffeeCup(un.Model):

# Add labels to the model by calling the constructor of the parent un.Model
def __init__(self):

super(CoffeeCup, self).__init__(labels=["Time (s)", "Temperature (C)"])

We can then implement the run method:

# Define the run method
def run(self, kappa, T_env):

# Initial temperature and time array
time = np.linspace(0, 200, 150) # Minutes
T_0 = 95 # Celsius

# The equation describing the model
def f(T, time, kappa, T_env):

return -kappa*(T - T_env)

# Solving the equation by integration
temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

(continues on next page)
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(continued from previous page)

# Return time and model output
return time, temperature

Now, instead of creating a model from a model function, we initialize our CoffeeCup model:

# Initialize the model
model = CoffeeCup()

While the rest is unchanged:

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameters dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

3.2 A cooling coffee cup model with dependent parameters

Here we show an example (found in examples/coffee_cup_dependent/
uq_coffee_dependent_function.py) where we examine a cooling coffee cup model with dependent
parameters. We modify the simple cooling coffee cup model by introducing two auxillary variables 𝛼 and �̂�:

𝜅 = 𝛼�̂�

to get:

𝑑𝑇 (𝑡)

𝑑𝑡
= −𝛼�̂� (𝑇 (𝑡) − 𝑇𝑒𝑛𝑣) .

The auxillary variables are made dependent by requiring that the model should be identical to the original model. We
assume that 𝛼 is an uncertain scaling factor:

𝛼 = Uniform(0.5, 1.5),

and set:

�̂� =
𝜅

𝛼
.

Which gives us the following distributions:

𝛼 = Uniform(0.5, 1.5)

�̂� =
Uniform(0.025, 0.075)

𝛼
𝑇𝑒𝑛𝑣 = Uniform(15, 25).

With Chaospy we can create these dependencies using arithmetic operators:

14 Chapter 3. Examples
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# Create the distributions
T_env_dist = cp.Uniform(15, 25)
alpha_dist = cp.Uniform(0.5, 1.5)
kappa_hat_dist = cp.Uniform(0.025, 0.075)/alpha_dist

# Define the parameters dictionary
parameters = {"alpha": alpha_dist,

"kappa_hat": kappa_hat_dist,
"T_env": T_env_dist}

We can use this parameters dictionary directly when we set up the uncertainty quantification

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

The Rosenblatt transformation is by default automatically used we have the parameters that are dependent. We also
set the seed to easier be able to reproduce the result.

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification,
# which automatically use the Rosenblatt transformation
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

The complete code example become:

import uncertainpy as un
import chaospy as cp
import numpy as np
from scipy.integrate import odeint

# Create the coffee cup model function
def coffee_cup_dependent(kappa_hat, T_env, alpha):

# Initial temperature and time
time = np.linspace(0, 200, 150) # Minutes
T_0 = 95 # Celsius

# The equation describing the model
def f(T, time, alpha, kappa_hat, T_env):

return -alpha*kappa_hat*(T - T_env)

# Solving the equation by integration.
temperature = odeint(f, T_0, time, args=(alpha, kappa_hat, T_env))[:, 0]

# Return time and model results
return time, temperature

# Create a model from the coffee_cup_dependent function and add labels
model = un.Model(coffee_cup_dependent, labels=["Time (s)", "Temperature (C)"])

# Create the distributions

(continues on next page)
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(continued from previous page)

T_env_dist = cp.Uniform(15, 25)
alpha_dist = cp.Uniform(0.5, 1.5)
kappa_hat_dist = cp.Uniform(0.025, 0.075)/alpha_dist

# Define the parameters dictionary
parameters = {"alpha": alpha_dist,

"kappa_hat": kappa_hat_dist,
"T_env": T_env_dist}

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification,
# which automatically use the Rosenblatt transformation
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

In this case, the distribution we assign to 𝛼 does not matter for the end result, as the distribution for �̂� will be scaled
accordingly. Using the Rosenblatt transformation, an uncertainty quantification and sensitivity analysis of the depen-
dent coffee cup model therefore returns the same results as seen in the simple coffee cup model, where the role of the
original 𝜅 is taken over by �̂�, while the sensitivity to the additional parameter 𝛼 becomes strictly zero.

3.3 The Hodgkin-Huxley model

Here we examine the canonical Hodgkin-Huxley model (Hodgkin and Huxley, 1952). An uncertainty analysis of this
model has been performed previously (Valderrama et al., 2015), and we here we repeat a part of that study using
Uncertainpy.

The here used version of the Hodgkin-Huxley model has 11 parameters:

Parameter Value Unit Meaning
𝑉0 -10 mV Initial voltage
𝐶m 1 F/cm2 Membrane capacitance
𝑔Na 120 mS/cm2 Sodium (Na) conductance
𝑔K 36 mS/cm2 Potassium (K) conductance
𝑔I 0.3 mS/cm2 Leak current conductance
𝐸Na 112 mV Sodium equilibrium potential
𝐸K -12 mV Potassium equilibrium potential
𝐸I 10.613 mV Leak current equilibrium potential
𝑛0 0.0011 Initial potassium activation gating variable
𝑚0 0.0003 Initial sodium activation gating variable
ℎ0 0.9998 Initial sodium inactivation gating variable

As in the previous study, we assume each of these parameters have a uniform distribution in the range ±10% around
their original value.

We use uncertainty quantification and sensitivity analysis to explore how this parameter uncertainty affect the model
output, i.e., the action potential response of the neural membrane potential 𝑉𝑚 to an external current injection. The
model was exposed to a continuous external stimulus of 140𝜇A/cm

2 starting at 𝑡 = 0, and we examined the membrane
potential in the time window between 𝑡 = 5 and 15 ms

16 Chapter 3. Examples
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As in the cooling coffee cup example, we implement the Hodgkin-Huxley model as a Python function (found in /
examples/valderrama/valderrama.py):

import uncertainpy as un

import numpy as np
from scipy.integrate import odeint

# External stimulus
def I(time):

return 140 # micro A/cm**2

def valderrama(V_0=-10,
C_m=1,
gbar_Na=120,
gbar_K=36,
gbar_L=0.3,
E_Na=112,
E_K=-12,
E_l=10.613,
m_0=0.0011,
n_0=0.0003,
h_0=0.9998):

# Setup time
end_time = 15 # ms
dt = 0.025 # ms
time = np.arange(0, end_time + dt, dt)

# K channel
def alpha_n(V):

return 0.01*(10 - V)/(np.exp((10 - V)/10.) - 1)

def beta_n(V):
return 0.125*np.exp(-V/80.)

def n_f(n, V):
return alpha_n(V)*(1 - n) - beta_n(V)*n

def n_inf(V):
return alpha_n(V)/(alpha_n(V) + beta_n(V))

# Na channel (activating)
def alpha_m(V):

return 0.1*(25 - V)/(np.exp((25 - V)/10.) - 1)

def beta_m(V):
return 4*np.exp(-V/18.)

def m_f(m, V):
return alpha_m(V)*(1 - m) - beta_m(V)*m

def m_inf(V):
return alpha_m(V)/(alpha_m(V) + beta_m(V))

(continues on next page)
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(continued from previous page)

# Na channel (inactivating)
def alpha_h(V):

return 0.07*np.exp(-V/20.)

def beta_h(V):
return 1/(np.exp((30 - V)/10.) + 1)

def h_f(h, V):
return alpha_h(V)*(1 - h) - beta_h(V)*h

def h_inf(V):
return alpha_h(V)/(alpha_h(V) + beta_h(V))

def dXdt(X, t):
V, h, m, n = X

g_Na = gbar_Na*(m**3)*h
g_K = gbar_K*(n**4)
g_l = gbar_L

dmdt = m_f(m, V)
dhdt = h_f(h, V)
dndt = n_f(n, V)

dVdt = (I(t) - g_Na*(V - E_Na) - g_K*(V - E_K) - g_l*(V - E_l))/C_m

return [dVdt, dhdt, dmdt, dndt]

initial_conditions = [V_0, h_0, m_0, n_0]

X = odeint(dXdt, initial_conditions, time)
values = X[:, 0]

# Only return from 5 seconds onwards, as in the Valderrama paper
values = values[time > 5]
time = time[time > 5]

# Add info needed by certain spiking features and efel features
info = {"stimulus_start": time[0], "stimulus_end": time[-1]}

return time, values, info

We use this function when we perform the uncertainty quantification and sensitivity analysis (found in /examples/
valderrama/uq_valderrama.py). We first initialize our model:

# Initialize the model
model = un.Model(run=valderrama,

labels=["Time (ms)", "Membrane potential (mV)"])

Then we create the set of parameters:

# Define a parameter dictionary

(continues on next page)
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(continued from previous page)

parameters = {"V_0": -10,
"C_m": 1,
"gbar_Na": 120,
"gbar_K": 36,
"gbar_L": 0.3,
"m_0": 0.0011,
"n_0": 0.0003,
"h_0": 0.9998,
"E_Na": 112,
"E_K": -12,
"E_l": 10.613}

# Create the parameters
parameters = un.Parameters(parameters)

We use set_all_distributions() and uniform() to give all parameters a uniform distribution in the range
±10% around their fixed value.

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

set_all_distributions sets the distribution of all parameters. If it receives a function as input, it gives that
function the fixed value of each parameter, and expects to receive Chaospy functions. uniform is a closure. It takes
interval as input and returns a function which takes the fixed_value of each parameter as input and returns a Chaospy
distribution with this interval around the fixed_value. Ultimately the distribution of each parameter is set to interval
around their fixed_value:

cp.Uniform(fixed_value - abs(interval/2.*fixed_value),
fixed_value + abs(interval/2.*fixed_value)).

We can now use polynomial chaos expansions with point collocation to calculate the uncertainty and sensitivity of the
model. We also set the seed to easier be able to reproduce the result.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,

parameters=parameters)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

The complete code for the uncertainty quantification and sensitivity becomes:

import uncertainpy as un
import chaospy as cp

from valderrama import valderrama

# Initialize the model
model = un.Model(run=valderrama,

labels=["Time (ms)", "Membrane potential (mV)"])

# Define a parameter dictionary
parameters = {"V_0": -10,

"C_m": 1,
"gbar_Na": 120,
"gbar_K": 36,

(continues on next page)
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(continued from previous page)

"gbar_L": 0.3,
"m_0": 0.0011,
"n_0": 0.0003,
"h_0": 0.9998,
"E_Na": 112,
"E_K": -12,
"E_l": 10.613}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,

parameters=parameters)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

3.4 A multi-compartment model of a thalamic interneuron imple-
mented in NEURON

In this example we illustrate how Uncertainpy can be used on models implemented in NEURON. For this example,
we select a previously published model of an interneuron in the dorsal lateral geniculate nucleus Halnes et al., 2011.
Since the model is in implemented in NEURON, the original model can be used directly with Uncertainpy with the use
of NeuronModel. The code for this case study is found in /examples/interneuron/uq_interneuron.py.
To be able to run this example you require both the NEURON simulator, as well as the interneuron model saved in the
folder /interneuron_model/.

In the original modeling study, a set of 7 parameters were tuned manually through a series of trials and errors until the
interneuron model obtained the desired response characteristics. The final parameter set is:

Param-
eter

Value Unit Neuron vari-
able

Meaning

𝑔Na 0.09 S/cm2 gna Max Na+-conductance in soma
𝑔Kdr 0.37 S/cm2 gkdr Max direct rectifying K+-conductance in soma
𝑔CaT 1.17e-

5
S/cm2 gcat Max T-type Ca2+-conductance in soma

𝑔CaL 9e-4 S/cm2 gcal Max L-type Ca2+-conductance in soma
𝑔h 1.1e-

4
S/cm2 ghbar Max conductance of a non-specific hyperpolarization activated

cation channel in soma
𝑔AHP 6.4e-

5
S/cm2 gahp Max afterhyperpolarizing K+-conductance in soma

𝑔CAN 2e-8 S/cm2 gcanbar Max conductance of a Ca2+-activated non-specific cation channel in
soma

To perform an uncertainty quantification and sensitivity analysis of this model, we assume each of these 7 parameters
have a uniform uncertainty distribution in the interval ±10% around their original value. We create these parameters
similar to how we did in the Hodgkin-Huxley example:
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# Define a parameter list
parameters= {"gna": 0.09,

"gkdr": 0.37,
"gcat": 1.17e-5,
"gcal": 0.0009,
"ghbar": 0.00011,
"gahp": 6.4e-5,
"gcanbar": 2e-8}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

A point-to-point comparison of voltage traces is often uninformative, and we therefore want to perform a feature based
analysis of the model. Since we examine a spiking neuron model, we choose the features in SpikingFeatures:

# Initialize the features
features = un.SpikingFeatures(features_to_run="all")

We study the response of the interneuron to a somatic current injection between 1000 ms < 𝑡 < 1900 ms.
SpikingFeatures needs to know the start and end time of this stimulus to be able to calculate certain
features. They are specified through the stimulus_start and stimulus_end arguments when initializ-
ing NeuronModel. Additionally, the interneuron model uses adaptive time steps, meaning we have to set
interpolate=True. In this way we tell Uncertainpy to perform an interpolation to get the output on a regu-
lar form before performing the analysis: We also give the path to the folder where the neuron model is stored with
path="interneuron_model/". NeuronModel loads the NEURON model from mosinit.hoc, sets the pa-
rameters of the model, evaluates the model and returns the somatic membrane potential of the neuron, (the voltage of
the section named "soma"). NeuronModel therefore does not require a model function.

# Initialize the model with the start and end time of the stimulus
model = un.NeuronModel(path="interneuron_model/", interpolate=True,

stimulus_start=1000, stimulus_end=1900)

We set up the problem, adding our features before we use polynomial chaos expansion with point collocation to
compute the statistical metrics for the model output and all features. We also set the seed to easier be able to reproduce
the result.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,

parameters=parameters,
features=features)

# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

The complete code becomes:

import uncertainpy as un

# Define a parameter list
parameters= {"gna": 0.09,

"gkdr": 0.37,
"gcat": 1.17e-5,
"gcal": 0.0009,

(continues on next page)
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"ghbar": 0.00011,
"gahp": 6.4e-5,
"gcanbar": 2e-8}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

# Initialize the features
features = un.SpikingFeatures(features_to_run="all")

# Initialize the model with the start and end time of the stimulus
model = un.NeuronModel(path="interneuron_model/", interpolate=True,

stimulus_start=1000, stimulus_end=1900)

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,

parameters=parameters,
features=features)

# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)

3.5 A sparsely connected recurrent network using Nest

In the last case study, we use Uncertainpy to perform a feature based analysis of the sparsely connected recurrent
network by Brunel (2000). We implement the Brunel network using NEST inside a Python function, and create 10000
inhibitory and 2500 excitatory neurons. We record the output from 20 of the excitatory neurons, and simulate the
network for 1000 ms. This is the values used to create the results in the Uncertainpy paper. If you want to just test
the network, we recommend reducing the model to 2000 inhibitory and 500 excitatory neurons, and only simulate the
network for 100 ms. To be able to run this example you require NEST to be anle to run the model and elephant,
neo, and quantities to be able to use the network features.

We want to use NestModel to create our model. NestModel requires the model function to be specified through
the run argument, unlike NeuronModel. The NEST model function has the same requirements as a regular model
function, except it is restricted to return only two objects: the final simulation time (simulation_end), and a list
of spike times for each neuron in the network (spiketrains). NestModel then postproccess this result for us to
a regular result. The final uncertainty quantification of a NEST network therefore predicts the probability for a spike
to occur at any specific time point in the simulation. We implement the Brunel network as such a function (found in
/examples/brunel/brunel.py):

import nest

def brunel_network(eta=2, g=2, delay=1.5, J=0.1):
"""
A sparsely connected recurrent network (Brunel).

Brunel N, Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons, Journal of Computational Neuroscience 8,
183-208 (2000).

(continues on next page)
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Parameters
----------
eta : {int, float}, optional

External rate relative to threshold rate. Default is 2.
g : {int, float}, optional

Ratio inhibitory weight/excitatory weight. Default is 5.
delay : {int, float}, optional

Synaptic delay in ms. Default is 1.5.
J : {int, float}, optional

Amplitude of excitatory postsynaptic current. Default is 0.1

Notes
-----
Brunel N, Dynamics of Sparsely Connected Networks of Excitatory and
Inhibitory Spiking Neurons, Journal of Computational Neuroscience 8,
183-208 (2000).
"""
# Network parameters
N_rec = 20 # Record from 20 neurons
simulation_end = 1000 # Simulation time

tau_m = 20.0 # Time constant of membrane potential in ms
V_th = 20.0
N_E = 10000 # Number of excitatory neurons
N_I = 2500 # Number of inhibitory neurons
N_neurons = N_E + N_I # Number of neurons in total
C_E = int(N_E/10) # Number of excitatory synapses per neuron
C_I = int(N_I/10) # Number of inhibitory synapses per neuron
J_I = -g*J # Amplitude of inhibitory postsynaptic current
cutoff = 100 # Cutoff to avoid transient effects, in ms

nu_ex = eta*V_th/(J*C_E*tau_m)
p_rate = 1000.0*nu_ex*C_E

nest.ResetKernel()

# Configure kernel
nest.SetKernelStatus({"grng_seed": 10})

nest.SetDefaults('iaf_psc_delta',
{'C_m': 1.0,
'tau_m': tau_m,
't_ref': 2.0,
'E_L': 0.0,
'V_th': V_th,
'V_reset': 10.0})

# Create neurons
nodes = nest.Create('iaf_psc_delta', N_neurons)
nodes_E = nodes[:N_E]
nodes_I = nodes[N_E:]

noise = nest.Create('poisson_generator',1,{'rate': p_rate})

spikes = nest.Create('spike_detector',2,
[{'label': 'brunel-py-ex'},
{'label': 'brunel-py-in'}])

(continues on next page)

3.5. A sparsely connected recurrent network using Nest 23



Uncertainpy Documentation, Release 1.2.3

(continued from previous page)

spikes_E = spikes[:1]
spikes_I = spikes[1:]

# Connect neurons to each other
nest.CopyModel('static_synapse_hom_w', 'excitatory',

{'weight':J, 'delay':delay})
nest.Connect(nodes_E, nodes,

{'rule': 'fixed_indegree', 'indegree': C_E},
'excitatory')

nest.CopyModel('static_synapse_hom_w', 'inhibitory',
{'weight': J_I, 'delay': delay})

nest.Connect(nodes_I, nodes,
{'rule': 'fixed_indegree', 'indegree': C_I},
'inhibitory')

# Connect poisson generator to all nodes
nest.Connect(noise, nodes, syn_spec='excitatory')

nest.Connect(nodes_E[:N_rec], spikes_E)
nest.Connect(nodes_I[:N_rec], spikes_I)

# Run the simulation
nest.Simulate(simulation_end)

events_E = nest.GetStatus(spikes_E, 'events')[0]
events_I = nest.GetStatus(spikes_I, 'events')[0]

# Excitatory spike trains
# Makes sure the spiketrain is added even if there are no results
# to get a regular result
spiketrains = []
for sender in nodes_E[:N_rec]:

spiketrain = events_E["times"][events_E["senders"] == sender]
spiketrain = spiketrain[spiketrain > cutoff] - cutoff
spiketrains.append(spiketrain)

simulation_end -= cutoff

return simulation_end, spiketrains

And use it to create our model (example found in /examples/brunel/uq_brunel.py): We set
ignore=True since we are not interested in the model result itself. This is recommended for NEST models as
long as you do not need the model results, since the uncertainty calculations for the for the model results require much
time and memory.

# Create a Nest model from the brunel network function
# We set ``ignore=True`` since we are not interested in

(continues on next page)
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# the model result itself.
# This is recommended for NEST models as long as you do not
# need the model results, since the uncertainty calculations for the
# for the model results require much time and memory.
model = un.NestModel(run=brunel_network, ignore=True)

The Brunel model has four uncertain parameters:

1. the external rate (𝜈ext) relative to threshold rate (𝜈thr) given as 𝜂 = 𝜈ext/𝜈thr,

2. the relative strength of the inhibitory synapses 𝑔,

3. the synaptic delay 𝐷, and

4. the amplitude of excitatory postsynaptic current 𝐽𝑒.

Depending on the parameterizations of the model, the Brunel network may be in several different activity states. For
the current example, we limit our analysis to two of these states. We create two sets of parameters, one for each of two
states, and assume the parameter uncertainties are characterized by uniform probability distributions within the ranges
below:

Parameter Range SR Range AI Variable Meaning
𝜂 [1.5, 3.5] [1.5, 3.5] eta External rate relative to threshold rate
𝑔 [1, 3] [5, 8] g Relative strength of inhibitory synapses
𝐷 [1.5, 3] [1.5, 3] delay Synaptic delay (ms)
𝐽𝑒 [0.05, 0.15] [0.05, 0.15] J_e Amplitude excitatory postsynaptic current (mV)

These ranges correspond to the synchronous regular (SR) state, where the neurons are almost completely synchronized,
and the asynchronous irregular (AI) state, where the neurons fire individually at low rates. We create two sets of
parameters, one for each state:

# Parametes for the synchronous regular (SR) state
parameters = {"eta": cp.Uniform(1.5, 3.5),

"g": cp.Uniform(1, 3),
"delay": cp.Uniform(1.5, 3)}

parameters_SR = un.Parameters(parameters)

# Parameter for the asynchronous irregular (AI) state
parameters = {"eta": cp.Uniform(1.5, 2.2),

"g": cp.Uniform(5, 8),
"delay": cp.Uniform(1.5, 3)}

parameters_AI = un.Parameters(parameters)

We use the features in NetworkFeatures to examine features of the Brunel network.

features = un.NetworkFeatures()

We set up the problems with the SR parameter set and use polynomial chaos with point collocation to perform the
uncertainty quantification and sensitivity analysis. We specify a filename for the data, and a folder where to save the
figures, to keep the results from the AI and SR state separated. We also set the seed to easier be able to reproduce the
result.
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UQ = un.UncertaintyQuantification(model,
parameters=parameters_SR,
features=features)

# Perform uncertainty quantification
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
UQ.quantify(figure_folder="figures_brunel_SR",

filename="brunel_SR",
seed=10)

We then change the parameters, and perform the uncertainty quantification and sensitivity analysis for the new set of
parameters, again specifying a filename and figure folder.

# Change the set of parameters
UQ.parameters = parameters_AI

# Perform uncertainty quantification on the new parameter set
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(figure_folder="figures_brunel_AI",

filename="brunel_AI",
seed=10)

The complete code is:

import uncertainpy as un
import chaospy as cp

from brunel import brunel_network

# Create a Nest model from the brunel network function
# We set ``ignore=True`` since we are not interested in
# the model result itself.
# This is recommended for NEST models as long as you do not
# need the model results, since the uncertainty calculations for the
# for the model results require much time and memory.
model = un.NestModel(run=brunel_network, ignore=True)

# Parametes for the synchronous regular (SR) state
parameters = {"eta": cp.Uniform(1.5, 3.5),

"g": cp.Uniform(1, 3),
"delay": cp.Uniform(1.5, 3)}

parameters_SR = un.Parameters(parameters)

# Parameter for the asynchronous irregular (AI) state
parameters = {"eta": cp.Uniform(1.5, 2.2),

"g": cp.Uniform(5, 8),
"delay": cp.Uniform(1.5, 3)}

parameters_AI = un.Parameters(parameters)

# Initialize network features
features = un.NetworkFeatures()

# Set up the problem

(continues on next page)
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UQ = un.UncertaintyQuantification(model,
parameters=parameters_SR,
features=features)

# Perform uncertainty quantification
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
UQ.quantify(figure_folder="figures_brunel_SR",

filename="brunel_SR",
seed=10)

# Change the set of parameters
UQ.parameters = parameters_AI

# Perform uncertainty quantification on the new parameter set
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(figure_folder="figures_brunel_AI",

filename="brunel_AI",
seed=10)

3.6 A layer 5 pyramidal neuron implemented with NEURON

In this example we illustrate how we can subclass a NeuronModel to customize the methods. We select a set of
reduced models of layer 5 pyramidal neurons (Bahl et al., 2012). The code for this example is found in /examples/
bahl/uq_bahl.py. To be able to run this example you require both the NEURON simulator, as well as the layer 5
pyramidal neuron model saved in the folder /bahl_model/.

Since the model is implemented in NEURON, we use the NeuronModel. The problem is that this model require
us to recalculate certain properties of the model after the parameters have been set. We therefore have to make
change to the NeuronModel class so we recalculate these properties. The standard run() method implemented in
NeuronModel calls set_parameters() to set the parameters. We therefore only need to change this method in
the NeuronModel. First we subclass NeuronModel. For ease of use, we hardcode in the path to the Bahl model.

# Subclassing NeuronModel
class NeuronModelBahl(un.NeuronModel):

def __init__(self, stimulus_start=None, stimulus_end=None):
# Hardcode the path of the Bahl neuron model
super(NeuronModelBahl, self).__init__(interpolate=True,

path="bahl_model",
stimulus_start=stimulus_start,
stimulus_end=stimulus_end)

We then implement a new set_parameters method, that recalculates the required properties after the parameters
have been set.

# Reimplement the set_parameters method used by run
def set_parameters(self, parameters):

for parameter in parameters:
self.h(parameter + " = " + str(parameters[parameter]))

# These commands must be added for this specific
# model to recalculate the parameters after they have been set

(continues on next page)
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self.h("recalculate_passive_properties()")
self.h("recalculate_channel_densities()")

Now we can initialize our new model.

# Initialize the model with the start and end time of the stimulus
model = NeuronModelBahl(stimulus_start=100, stimulus_end=600)

We can then create the uncertain parameters, which we here set to be "e_pas" and "apical Ra". Here we do not
create a Parameter object, but use the parameter list directly, to show that this option exists.

# Define a parameter list and use it directly
parameters = {"e_pas": cp.Uniform(-60, -85),

"apical Ra": cp.Uniform(150, 300)}

The we use SpikingFeatures.

# Initialize the features
features = un.SpikingFeatures()

Lastly we set up and perform the uncertainty quantification and sensitivity analysis.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model,

parameters=parameters,
features=features)

data = UQ.quantify()

The complete code becomes:

import uncertainpy as un
import chaospy as cp

# Subclassing NeuronModel
class NeuronModelBahl(un.NeuronModel):

def __init__(self, stimulus_start=None, stimulus_end=None):
# Hardcode the path of the Bahl neuron model
super(NeuronModelBahl, self).__init__(interpolate=True,

path="bahl_model",
stimulus_start=stimulus_start,
stimulus_end=stimulus_end)

# Reimplement the set_parameters method used by run
def set_parameters(self, parameters):

for parameter in parameters:
self.h(parameter + " = " + str(parameters[parameter]))

# These commands must be added for this specific
# model to recalculate the parameters after they have been set
self.h("recalculate_passive_properties()")
self.h("recalculate_channel_densities()")

# Initialize the model with the start and end time of the stimulus
model = NeuronModelBahl(stimulus_start=100, stimulus_end=600)

(continues on next page)
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# Define a parameter list and use it directly
parameters = {"e_pas": cp.Uniform(-60, -85),

"apical Ra": cp.Uniform(150, 300)}

# Initialize the features
features = un.SpikingFeatures()

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model,

parameters=parameters,
features=features)

data = UQ.quantify()
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CHAPTER 4

Frequently asked questions

Here is a collection of frequently asked questions.

4.1 Is Uncertainpy usable with multiple model outputs?

Yes, however it does unfortunately not have direct support for this. Uncertainpy by default only performs an uncer-
tainty quantification of the first model output returned. But you can return the additional model outputs in the info
dictionary, and then define new features that extract each model output from the info dictionary, see the code example
in Multiple model outputs.
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CHAPTER 5

UncertaintyQuantification

The uncertainpy.UncertaintyQuantification class is used to define the problem, perform the uncer-
tainty quantification and sensitivity analysis, and save and visualize the results. UncertaintyQuantification
combines the three main components required to perform an uncertainty quantification and sensitivity analysis:

• The model we want to examine.

• The parameters of the model.

• Specifications of features in the model output.

The model and parameters are required components, while the feature specifications are optional.

Among others, UncertaintyQuantification takes the arguments:

UQ = un.UncertaintyQuantification(
model=Model(...), # Required
parameters=Parameters(...), # Required
features=Features(...) # Optional

)

The arguments are given as instances of their corresponding Uncertainpy classes (Models, Parameters, and Features).

After the problem is set up, an uncertainty quantification and sensitivity analysis can be performed by using the
uncertainpy.UncertaintyQuantification.quantify() method. Among others, quantify takes
the optional arguments:

data = UQ.quantify(
method="pc"|"mc",
pc_method="collocation"|"spectral",
rosenblatt=False|True

)

The method argument allows the user to choose whether Uncertainpy should use polynomial chaos expansions ("pc")
or quasi-Monte Carlo ("mc") methods to calculate the relevant statistical metrics. If polynomial chaos expan-
sions are chosen, pc_method further specifies whether point collocation ("collocation") or spectral projection
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("spectral") methods are used to calculate the expansion coefficients. Finally, rosenblatt (False or True) deter-
mines if the Rosenblatt transformation should be used. If nothing is specified, Uncertainpy by default uses polynomial
chaos expansions based on point collocation without the Rosenblatt transformation.

The results from the uncertainty quantification are returned in data, as a Data object(see Data). The results are also
automatically saved in a folder named data, and figures automatically plotted and saved in a folder named figures,
both in the current directory. The returned data object is therefore not necessary to use.

Polynomial chaos expansions are recommended as long as the number of uncertain parameters is small (typically
> 20), as polynomial chaos expansions in these cases are much faster than quasi-Monte Carlo methods. Additionally,
sensitivity analysis is currently not yet available for studies based on the quasi-Monte Carlo method. Which of the
polynomial chaos expansions methods to choose is problem dependent, but in general the pseudo-spectral method is
faster than point collocation, but has lower stability. We therefore generally recommend the point collocation method.

We note that there is no guarantee each set of sampled parameters produces a valid model or feature output. For
example, a feature such as the spike width will not be defined in a model evaluation that produces no spikes. In such
cases, Uncertainpy gives a warning which includes the number of runs that failed to return a valid output, and performs
the uncertainty quantification and sensitivity analysis using the reduced set of valid runs. Point collocation (as well as
the quasi-Monte Carlo method) are robust towards missing values as long as the number of results remaining is high
enough, another reason the point collocation method is recommend. However, if a large fraction of the simulations
fail, the user could consider redefining the problem (e.g., by using narrower parameter distributions).

5.1 API Reference

class uncertainpy.UncertaintyQuantification(model, parameters, features=None,
uncertainty_calculations=None,
create_PCE_custom=None, cus-
tom_uncertainty_quantification=None,
CPUs=u’max’, logger_level=u’info’,
logger_filename=u’uncertainpy.log’, back-
end=u’auto’)

Perform an uncertainty quantification and sensitivity analysis of a model and features of the model.

It implements both quasi-Monte Carlo methods and polynomial chaos expansions using either point collocation
or the pseudo-spectral method. Both of the polynomial chaos expansion methods have support for the rosenblatt
transformation to handle dependent input parameters.

Parameters

• model ({None, Model or Model subclass instance, model function}) – Model to perform
uncertainty quantification on. For requirements see Model.run. Default is None.

• parameters ({None, Parameters instance, list of Parameter instances, list with [[name,
value, distribution], . . . ]}) – Either None, a Parameters instance or a list of the parameters
that should be created. The two lists are similar to the arguments sent to Parameters. Default
is None.

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all will be calculated. Default is None.

• uncertainty_calculations (UncertaintyCalculations or UncertaintyCalculations subclass
instance, optional) – An UncertaintyCalculations class or subclass that implements (cus-
tom) uncertainty quantification and sensitivity analysis methods.

• create_PCE_custom (callable, optional) – A custom method for calculating
the polynomial chaos approximation. For the requirements of the function see
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UncertaintyCalculations.create_PCE_custom. Overwrites existing
create_PCE_custom method. Default is None.

• custom_uncertainty_quantification (callable, optional) – A custom method
for calculating uncertainties. For the requirements of the function see
UncertaintyCalculations.custom_uncertainty_quantification.
Overwrites existing custom_uncertainty_quantification method. Default is
None.

• CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the
model and features. If None, no multiprocessing is used. If “max”, the maximum number
of CPUs on the computer (multiprocess.cpu_count()) is used. Default is “max”.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed Default logger level is “info”.

• logger_filename (str) – Name of the logfile. If None, no logging to file is performed.
Default is “uncertainpy.log”.

• backend ({“auto”, “hdf5”, “exdir”}, optional) – The fileformat used to save and load data
to/from file. “auto” assumes the filenames ends with either “.h5” for HDF5 files or “.exdir”
for Exdir files. If unknown fileextension defaults to saving data as HDF5 files. “hdf5” saves
and loads files from HDF5 files. “exdir” saves and loads files from Exdir files. Default is
“auto”.

Variables

• model (Model or Model subclass) – The model to perform uncertainty quantifi-
cation on.

• parameters (Parameters) – The uncertain parameters.

• features (Features or Features subclass) – The features of the model to
perform uncertainty quantification on.

• uncertainty_calculations (UncertaintyCalculations or
UncertaintyCalculations subclass) – UncertaintyCalculations object re-
sponsible for performing the uncertainty quantification calculations.

• data (Data) – A data object that contains the results from the uncertainty quantification.
Contains all model and feature evaluations, as well as all calculated statistical metrics.

Raises ValueError – If unsupported backend is chosen.

See also:

uncertainpy.features, uncertainpy.Parameter, uncertainpy.Parameters,
uncertainpy.models, uncertainpy.core.UncertaintyCalculations

uncertainpy.core.UncertaintyCalculations.create_PCE_custom Requirements for cre-
ate_PCE_custom

uncertainpy.models.Model.run Requirements for the model run function.

custom_uncertainty_quantification(plot=u’condensed_first’, figure_folder=u’figures’, fig-
ureformat=u’.png’, save=True, data_folder=u’data’,
filename=None, **custom_kwargs)

Perform a custom uncertainty quantification and sensitivity analysis, implemented by the user.

Parameters

• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
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the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

• **custom_kwargs – Any number of arguments for the custom uncertainty quantification.

Raises NotImplementedError – If the custom uncertainty quantification method have not
been implemented.

Notes

For details on how to implement the custom uncertainty quantification method see UncertaintyCalcula-
tions.custom_uncertainty_quantification.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

See also:

uncertainpy.plotting.PlotUncertainty(), uncertainpy.Parameters()

uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification()
Requirements for custom_uncertainty_quantification

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

load(filename)
Load data from disk.

Parameters filename (str) – Name of the stored data file.
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See also:

uncertainpy.Data() Data class

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

monte_carlo(uncertain_parameters=None, nr_samples=10000, seed=None,
plot=u’condensed_first’, figure_folder=u’figures’, figureformat=u’.png’, save=True,
data_folder=u’data’, filename=None)

Perform an uncertainty quantification using the quasi-Monte Carlo method.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when performing the uncertainty quantification. If None, all uncertain parameters are
used. Default is None.

• nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sam-
pling. nr_samples is used for the uncertainty quantification and (nr_samples/
2)*(nr_uncertain_parameters + 2) samples is used for the sensitivity anal-
ysis. Default nr_samples is 10**4.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.

• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

Returns data – A data object that contains the results from the uncertainty quantification. Con-
tains all model and feature evaluations, as well as all calculated statistical metrics.

Return type Data
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Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

Which method to choose is problem dependent, but as long as the number of uncertain parameters is low
(less than around 20 uncertain parameters) polynomial chaos methods are much faster than Monte Carlo
methods. Above this Monte Carlo methods are the best.

In the quasi-Monte Carlo method we quasi-randomly draw (nr_samples/
2)*(nr_uncertain_parameters + 2) (nr_samples=10**4 by default) parameter samples
using Saltelli’s sampling scheme. We require this number of samples to be able to calculate the Sobol
indices. We evaluate the model for each of these parameter samples and calculate the features from
each of the model results. This step is performed in parallel to speed up the calculations. Then we use
nr_samples of the model and feature results to calculate the mean, variance, and 5th and 95th percentile
for the model and each feature. Lastly, we use all calculated model and each feature results to calculate
the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

Sensitivity analysis is currently not yet available for the quasi-Monte Carlo method.

See also:

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.
PlotUncertainty()

uncertainpy.core.UncertaintyCalculations.monte_carlo() Uncertainty quantifica-
tion using quasi-Monte Carlo methods

monte_carlo_single(uncertain_parameters=None, nr_samples=10000, seed=None,
plot=u’condensed_first’, save=True, data_folder=u’data’, fig-
ure_folder=u’figures’, figureformat=u’.png’, filename=None)

Perform an uncertainty quantification for a single parameter at the time using the quasi-Monte Carlo
method.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when performing the uncertainty quantification. If None, all uncertain parameters are
used. Default is None.

• nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sam-
pling. nr_samples is used for the uncertainty quantification and (nr_samples/
2)*(nr_uncertain_parameters + 2) samples is used for the sensitivity anal-
ysis. Default nr_samples is 10**4.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.

• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.
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• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

Returns data_dict – A dictionary that contains the data objects for each single parameter cal-
culation.

Return type dict

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

Which method to choose is problem dependent, but as long as the number of uncertain parameters is low
(less than around 20 uncertain parameters) polynomial chaos methods are much faster than Monte Carlo
methods. Above this Monte Carlo methods are the best.

In the quasi-Monte Carlo method we quasi-randomly draw (nr_samples/
2)*(nr_uncertain_parameters + 2) (nr_samples=10**4 by default) parameter samples
using Saltelli’s sampling scheme. We require this number of samples to be able to calculate the Sobol
indices. We evaluate the model for each of these parameter samples and calculate the features from
each of the model results. This step is performed in parallel to speed up the calculations. Then we use
nr_samples of the model and feature results to calculate the mean, variance, and 5th and 95th percentile
for the model and each feature. Lastly, we use all calculated model and each feature results to calculate
the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

Sensitivity analysis is currently not yet available for the quasi-Monte Carlo method.

See also:

uncertainpy.Data(), uncertainpy.plotting.PlotUncertainty(), uncertainpy.
Parameters()

uncertainpy.core.UncertaintyCalculations.monte_carlo() Uncertainty quantifica-
tion using quasi-Monte Carlo methods

parameters
Model parameters.

Parameters new_parameters ({None, Parameters instance, list of Parameter instances, list
[[name, value, distribution], . . . ]}) – Either None, a Parameters instance or a list of the pa-
rameters that should be created. The two lists are similar to the arguments sent to Parameters.
Default is None.

Returns parameters – Parameters of the model. If None, no parameters have been set.

Return type {None, Parameters}

See also:

uncertainpy.Parameter, uncertainpy.Parameters
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plot(type=u’condensed_first’, folder=u’figures’, figureformat=u’.png’)
Create plots for the results of the uncertainty quantification and sensitivity analysis. self.data must
exist and contain the results.

Parameters

• data (Data) – A data object that contains the results from the uncertainty quantification.

• type ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• folder (str) – Name of the folder where to save all figures. Default is “figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

Notes

These plots are intended as quick way to get an overview of the results, and not to create publication ready
plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

See also:

uncertainpy.Data(), uncertainpy.plotting.PlotUncertainty()

polynomial_chaos(method=u’collocation’, rosenblatt=u’auto’, uncertain_parameters=None, poly-
nomial_order=4, nr_collocation_nodes=None, quadrature_order=None,
nr_pc_mc_samples=10000, allow_incomplete=True, seed=None,
plot=u’condensed_first’, figure_folder=u’figures’, figureformat=u’.png’,
save=True, data_folder=u’data’, filename=None, **custom_kwargs)

Perform an uncertainty quantification and sensitivity analysis using polynomial chaos expansions.

Parameters

• method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when
creating the polynomial chaos approximation, if the polynomial chaos method is chosen.
“collocation” is the point collocation method “spectral” is pseudo-spectral projection, and
“custom” is the custom polynomial method. Default is “collocation”.

• rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used.
The Rosenblatt transformation must be used if the uncertain parameters have dependent
variables. If “auto” the Rosenblatt transformation is used if there are dependent parame-
ters, and it is not used of the parameters have independent distributions. Default is “auto”.

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when performing the uncertainty quantification. If None, all uncertain parameters are
used. Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose, if polynomial chaos with point collocation is used. If None, nr_collocation_nodes
= 2* number of expansion factors + 2. Default is None.
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• quadrature_order ({int, None}, optional) – The order of the Leja quadrature
method, if polynomial chaos with pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2. Default is None.

• nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of
the polynomial chaos approximation, if the polynomial chaos method is chosen.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.

• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

• **custom_kwargs – Any number of arguments for the custom polynomial chaos method,
create_PCE_custom.

Returns data – A data object that contains the results from the uncertainty quantification. Con-
tains all model and feature evaluations, as well as all calculated statistical metrics.

Return type Data

Raises

• ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

• ValueError – If method not one of “collocation”, “spectral” or “custom”.

• NotImplementedError – If custom pc method is chosen and have not been imple-
mented.

Notes

Which method to choose is problem dependent, but as long as the number of uncertain parameters is low
(less than around 20 uncertain parameters) polynomial chaos methods are much faster than Monte Carlo
methods. Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point collocation, but has lower stability.
We therefore generally recommend the point collocation method.

The model and feature do not necessarily give results for each node. The collocation method are robust
towards missing values as long as the number of results that remain is high enough. The pseudo-spectral
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method on the other hand, is sensitive to missing values, so allow_incomplete should be used with care in
that case.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done with care, and implementing
custom methods is only recommended for experts.

See also:

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.
PlotUncertainty()

uncertainpy.core.UncertaintyCalculations.polynomial_chaos() Uncertainty
quantification using polynomial chaos expansions

uncertainpy.core.UncertaintyCalculations.create_PCE_custom() Requirements
for create_PCE_custom

polynomial_chaos_single(method=u’collocation’, rosenblatt=u’auto’, polynomial_order=4,
uncertain_parameters=None, nr_collocation_nodes=None,
quadrature_order=None, nr_pc_mc_samples=10000, al-
low_incomplete=True, seed=None, plot=u’condensed_first’,
figure_folder=u’figures’, figureformat=u’.png’, save=True,
data_folder=u’data’, filename=None)

Perform an uncertainty quantification and sensitivity analysis for a single parameter at the time using
polynomial chaos expansions.

Parameters

• method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when
creating the polynomial chaos approximation, if the polynomial chaos method is chosen.
“collocation” is the point collocation method “spectral” is pseudo-spectral projection, and
“custom” is the custom polynomial method. Default is “collocation”.

• rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used.
The Rosenblatt transformation must be used if the uncertain parameters have dependent
variables. If “auto” the Rosenblatt transformation is used if there are dependent parame-
ters, and it is not used of the parameters have independent distributions. Default is “auto”.

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to per-
forming the uncertainty quantification for. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose, if polynomial chaos with point collocation is used. If None, nr_collocation_nodes
= 2* number of expansion factors + 2. Default is None.

• quadrature_order ({int, None}, optional) – The order of the Leja quadrature
method, if polynomial chaos with pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2. Default is None.

• nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of
the polynomial chaos approximation, if the polynomial chaos method is chosen.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.
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• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

• **custom_kwargs – Any number of arguments for the custom polynomial chaos method,
create_PCE_custom.

Returns data_dict – A dictionary that contains the data for each single parameter calculation.

Return type dict

Raises

• ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

• ValueError – If method not one of “collocation”, “spectral” or “custom”.

• NotImplementedError – If custom pc method is chosen and have not been imple-
mented.

Notes

Which method to choose is problem dependent, but as long as the number of uncertain parameters is low
(less than around 20 uncertain parameters) polynomial chaos methods are much faster than Monte Carlo
methods. Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point collocation, but has lower stability.
We therefore generally recommend the point collocation method.

The model and feature do not necessarily give results for each node. The collocation method are robust
towards missing values as long as the number of results that remain is high enough. The pseudo-spectral
method on the other hand, is sensitive to missing values, so allow_incomplete should be used with care in
that case.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done with care, and implementing
custom methods is only recommended for experts.

See also:

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.
PlotUncertainty()
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uncertainpy.core.UncertaintyCalculations.polynomial_chaos() Uncertainty
quantification using polynomial chaos expansions

uncertainpy.core.UncertaintyCalculations.create_PCE_custom() Requirements
for create_PCE_custom

quantify(method=u’pc’, pc_method=u’collocation’, rosenblatt=u’auto’, uncer-
tain_parameters=None, polynomial_order=4, nr_collocation_nodes=None,
quadrature_order=None, nr_pc_mc_samples=10000, nr_mc_samples=10000, al-
low_incomplete=True, seed=None, single=False, plot=u’condensed_first’, fig-
ure_folder=u’figures’, figureformat=u’.png’, save=True, data_folder=u’data’, file-
name=None, **custom_kwargs)

Perform an uncertainty quantification and sensitivity analysis using polynomial chaos expansions or quasi-
Monte Carlo methods.

Parameters

• method ({“pc”, “mc”, “custom”}, optional) – The method to use when performing the
uncertainty quantification and sensitivity analysis. “pc” is polynomial chaos method,
“mc” is the quasi-Monte Carlo method and “custom” are custom uncertainty quantification
methods. Default is “pc”.

• pc_method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when
creating the polynomial chaos approximation, if the polynomial chaos method is chosen.
“collocation” is the point collocation method “spectral” is pseudo-spectral projection, and
“custom” is the custom polynomial method. Default is “collocation”.

• rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used.
The Rosenblatt transformation must be used if the uncertain parameters have dependent
variables. If “auto” the Rosenblatt transformation is used if there are dependent parame-
ters, and it is not used of the parameters have independent distributions. Default is “auto”.

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when performing the uncertainty quantification. If None, all uncertain parameters are
used. Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose, if polynomial chaos with point collocation is used. If None, nr_collocation_nodes
= 2* number of expansion factors + 2. Default is None.

• quadrature_order ({int, None}, optional) – The order of the Leja quadrature
method, if polynomial chaos with pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2. Default is None.

• nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of
the polynomial chaos approximation, if the polynomial chaos method is chosen. Default
is 10**4.

• nr_mc_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling,
if the quasi-Monte Carlo method is chosen. nr_mc_samples is used for the uncertainty
quantification and (nr_mc_samples/2)*(nr_uncertain_parameters + 2)
samples is used for the sensitivity analysis. Default nr_mc_samples is 10**4.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.
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• single (bool) – If an uncertainty quantification should be performed with only one uncer-
tain parameter at the time. Requires that the values of each parameter is set. Default is
False.

• plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “eval-
uations”, None}, optional) – Type of plots to be created. “condensed_first” is a subset of
the most important plots and only plots each result once, and contains plots of the first
order Sobol indices. “condensed_total” is similar, but with the total order Sobol indices,
and “condensed_no_sensitivity” is the same without any Sobol indices plotted. “all” cre-
ates every plot. “evaluations” plots the model and feature evaluations. None plots nothing.
Default is “condensed_first”.

• figure_folder (str, optional) – Name of the folder where to save all figures. Default is
“figures”.

• figureformat (str) – The figure format to save the plots in. Supports all formats in mat-
plolib. Default is “.png”.

• save (bool, optional) – If the data should be saved. Default is True.

• data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.

• filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.

• **custom_kwargs – Any number of arguments for either the custom polynomial
chaos method, create_PCE_custom, or the custom uncertainty quantification,
custom_uncertainty_quantification.

Returns data – A data object that contains the results from the uncertainty quantification. Con-
tains all model and feature evaluations, as well as all calculated statistical metrics. If single
= True, then returns a dictionary that contains the data objects for each single parameter
calculation.

Return type Data, dict containing data objects

Raises

• ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

• ValueError – If method not one of “pc”, “mc” or “custom”.

• ValueError – If pc_method not one of “collocation”, “spectral” or “custom”.

• NotImplementedError – If custom method or custom pc method is chosen and have
not been implemented.

Notes

Which method to choose is problem dependent, but as long as the number of uncertain parameters is low
(less than around 20 uncertain parameters) polynomial chaos methods are much faster than Monte Carlo
methods. Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point collocation, but has lower stability.
We therefore generally recommend the point collocation method.

The model and feature do not necessarily give results for each node. The collocation method and quasi-
Monte Carlo methods are robust towards missing values as long as the number of results that remain is high
enough. The pseudo-spectral method on the other hand, is sensitive to missing values, so allow_incomplete
should be used with care in that case.
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In the quasi-Monte Carlo method we quasi-randomly draw (nr_mc_samples/
2)*(nr_uncertain_parameters + 2) (nr_mc_samples=10**4 by default) parameter samples
using Saltelli’s sampling scheme. We require this number of samples to be able to calculate the Sobol
indices. We evaluate the model for each of these parameter samples and calculate the features from
each of the model results. This step is performed in parallel to speed up the calculations. Then we
use nr_mc_samples of the model and feature results to calculate the mean, variance, and 5th and 95th
percentile for the model and each feature. Lastly, we use all calculated model and each feature results to
calculate the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the results, and not to create publication
ready plots. Custom plots of the data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done with care, and implementing
custom methods is only recommended for experts.

See also:

uncertainpy.Parameters(), uncertainpy.Data(), uncertainpy.plotting.
PlotUncertainty()

uncertainpy.core.UncertaintyCalculations.polynomial_chaos() Uncertainty
quantification using polynomial chaos expansions

uncertainpy.core.UncertaintyCalculations.monte_carlo() Uncertainty quantifica-
tion using quasi-Monte Carlo methods

uncertainpy.core.UncertaintyCalculations.create_PCE_custom() Requirements
for create_PCE_custom

uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification()
Requirements for custom_uncertainty_quantification

save(filename, folder=u’data’)
Save data to disk.

Parameters

• filename (str) – Name of the data file.

• folder (str, optional) – The folder to store the data in. Creates the folder if it does not exist.
Default is “/data”.

See also:

uncertainpy.Data() Data class

uncertainty_calculations
The class for performing the calculations for the uncertainty quantification and sensitivity analysis.

Parameters new_uncertainty_calculations (UncertaintyCalculations or UncertaintyCalcula-
tions subclass instance) – New UncertaintyCalculations object responsible for performing
the uncertainty quantification calculations.

Returns uncertainty_calculations – UncertaintyCalculations object responsible for performing
the uncertainty quantification calculations.

Return type UncertaintyCalculations or UncertaintyCalculations subclass instance

See also:

uncertainpy.core.UncertaintyCalculations
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CHAPTER 6

Models

In order to perform the uncertainty quantification and sensitivity analysis of a model, Uncertainpy needs to set the
parameters of the model, run the model using those parameters, and receive the model output. The main class for
models is Model, which is used to create custom models. Uncertainpy has built-in support for NEURON and NEST
models, found in the NeuronModel and NestModel classes respectively. Uncertainpy also has support for multiple
model outputs through the use of additional features. It should be noted that while Uncertainpy is tailored towards
neuroscience, it is not restricted to only neuroscience models. Uncertainpy can be used on any model that meets the
criteria in this section.

6.1 Model

Generally, models are created through the Model class. Model takes the argument run and the optional arguments
postprocess, adaptive and labels.

model = un.Model(run=example_model,
postprocess=example_postprocess,
interpolate=True,
labels=["xlabel", "ylabel"])

The run argument must be a Python function that runs a simulation on a specific model for a given set of model
parameters, and returns the simulation output. We call such a function for a model function. The postprocess ar-
gument is a Python function used to postprocess the model output if required. We go into details on the requirements of
the postprocess and model functions below. interpolate specifies whether the model should be interpolated
to a regular form. This is required for for example models with adaptive time steps. For adaptive models, Uncertainpy
automatically interpolates the output to a regular form (the same number of points for each model evaluation). Finally,
labels allows the user to specify a list of labels to be used on the axes when plotting the results.

6.1.1 Defining a model function

As explained above, the run argument is a Python function that runs a simulation on a specific model for a given set
of model parameters, and returns the simulation output. An example outline of a model function is:
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def example_model(parameter_1, parameter_2):
# An algorithm for the model, or a script that runs
# an external model, using the given input parameters.

# Returns the model output and model time
# along with the optional info object.
return time, values, info

Such a model function has the following requirements:

1. Input. The model function takes a number of arguments which define the uncertain parameters of the model.

2. Run the model. The model must then be run using the parameters given as arguments.

3. Output. The model function must return at least two objects, the model time (or equivalent, if applicable) and
model output. Additionally, any number of optional info objects can be returned. In Uncertainpy, we refer to
the time object as time, the model output object as values, and the remaining objects as info.

1. Time (time). The time can be interpreted as the x-axis of the model. It is used when interpolating (see
below), and when certain features are calculated. We can return None if the model has no time associated
with it.

2. Model output (values). The model output must either be regular, or it must be possible to interpolate
or postprocess the output (see Features) to a regular form.

3. Additional info (info). Some of the methods provided by Uncertainpy, such as the later defined model
postprocessing, feature preprocessing, and feature calculations, require additional information from the
model (e.g., the time a neuron receives an external stimulus). We recommend to use a single dictionary
as info object, with key-value pairs for the information, to make debugging easier. Uncertainpy always
uses a single dictionary as the info object. Certain features require that specific keys are present in this
dictionary.

The model itself does not need to be implemented in Python. Any simulator can be used, as long as we can control
the model parameters and retrieve the simulation output via Python. We can as a shortcut pass a model function to the
model argument in UncertaintyQuantification, instead of first having to create a Model instance.

6.1.2 Defining a postprocess function

The postprocess function is used to postprocess the model output before it is used in the uncertainty quantification.
Postprocessing does not change the model output sent to the feature calculations. This is useful if we need to trans-
form the model output This is useful if we need to transform the model output to a regular result for the uncertainty
quantification, but still need to preserve the original model output to reliably detect the model features.
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This figure illustrates how the objects returned by the model function are sent to both model postprocess, and
feature preprocess (see Features). Functions associated with the model are in red while functions associated with
features are in green.

An example outline of the postprocess function is:

def example_postprocess(time, values, info):
# Postprocess the result to a regular form using time,
# values, and info returned by the model function.

# Return the postprocessed model output and time.
return time_postprocessed, values_postprocessed

The only time postprocessing is required for Uncertainpy to work, is when the model produces output that can not
be interpolated to a regular form by Uncertainpy. Postprocessing is for example required for network models that
give output in the form of spike trains, i.e. time values indicating when a given neuron fires. It should be noted
that postprocessing of spike trains is already implemented in Uncertainpy, in the NestModel. For most purposes user
defined postprocessing will not be necessary.

The requirements for the postprocess function are:

1. Input. postprocess must take the objects returned by the model function as input arguments.

2. Postprocessing. The model time (time) and output (values) must be postprocessed to a regular form, or to
a form that can be interpolated to a regular form by Uncertainpy. If additional information is needed from the
model, it can be passed along in the info object.

3. Output. The postprocess function must return two objects:

1. Model time (time_postprocessed). The first object is the postprocessed time (or equivalent) of the
model. We can return None if the model has no time. Note that the automatic interpolation of the post-
processed time can only be performed if a postprocessed time is returned (if an interpolation is required).

2. Model output (values_postprocessed). The second object is the postprocessed model output.
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6.1.3 API Reference

class uncertainpy.models.Model(run=None, interpolate=False, labels=[], postprocess=None,
ignore=False, suppress_graphics=False, logger_level=u’info’,
**model_kwargs)

Class for storing the model to perform uncertainty quantification and sensitivity analysis on.

The run method must either be implemented or set to a function, and is responsible for running the model. If
you want to calculate features directly from the original model results, but still need to postprocess the model
results to perform the uncertainty quantification, you can implement the postprocessing in the postprocess
method.

Parameters

• run ({None, callable}, optional) – A function that implements the model. See the run
method for requirements of the function. Default is None.

• interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• labels (list, optional) – A list of label names for the axes when plotting the model. On the
form ["x-axis", "y-axis", "z-axis"], with the number of axes that is correct
for the model output. Default is an empty list.

• postprocess ({None, callable}, optional) – A function that implements the postprocessing
of the model. See the postprocess method for requirements of the function. Default is
None.

• ignore (bool, optional) – Ignore the model results when calculating uncertainties, which
means the uncertainty is not calculated for the model. Default is False.

• suppress_graphics (bool, optional) – Suppress all graphics created by the model. Default
is False.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed. Default logger level is “info”.

• **model_kwargs – Any number of arguments passed to the model function when it is run.

Variables

• labels (list) – A list of label names for the axes when plotting the model. On the form
["x-axis", "y-axis", "z-axis"], with the number of axes that is correct for the
model output.

• interpolate (bool) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• name (str) – Name of the model. Either the name of the class or the name of the function
set as run.

• suppress_graphics (bool) – Suppress all graphics created by the model.

• ignore (bool) – Ignore the model results when calculating uncertainties, which means
the uncertainty is not calculated for the model. The model results are still postprocessed if
a postprocessing is implemented. Default is False.

See also:

uncertainpy.models.Model.run, uncertainpy.models.Model.postprocess
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evaluate(**parameters)
Run the model with parameters and default model_kwargs options, and validate the result.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the model, either setting them with
Python, or assigning them to the simulator.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – Result of the model. Note that values myst either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

postprocess
Postprocessing of the time and results from the model.

No postprocessing is performed, and the direct model results are currently returned. If postprocessing is
needed it should follow the below format.

Parameters

• *model_result – Variable length argument list. Is the values that run returns. It contains
time and values, and then any number of optional info values.

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values the
model should return None or numpy.nan.

• values (array_like) – Result of the model.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – The postprocessed model results, values must either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

Notes

Perform a postprocessing of the model results before they are sent to the uncertainty quantification. The
model results must either be regular or be able to be interpolated. This is because the uncertainty quan-
tification methods needs results with the same number of points for each set of parameters to be able to
perform the uncertainty quantification.
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postprocess is implemented to make the model results regular, or on a form that can be interpolated.
The results from the postprocessing is not used to calculate features, and is therefore used if you want to
calculate features directly from the original model results, but still need to postprocess the model results
to perform the uncertainty quantification.

The requirements for a postprocess function are:

1. Input. postprocess must take the objects returned by the model function as input arguments.

2. Postprocessing. The model time (time) and output (values) must be postprocessed to a regular
form, or to a form that can be interpolated to a regular form by Uncertainpy. If additional information
is needed from the model, it can be passed along in the info object.

3. Output. The postprocess function must return two objects:

1. Model time (time_postprocessed). The first object is the postprocessed time (or equiv-
alent) of the model. We can return None if the model has no time. Note that the automatic
interpolation of the postprocessed time can only be performed if a postprocessed time is returned
(if an interpolation is required).

2. Model output (values_postprocessed). The second object is the postprocessed model
output.

run
Run the model and return time and model result.

This method must either be implemented or set to a function and is responsible for running the model. See
Notes for requirements.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the model, either setting them with
Python, or assigning them to the simulator.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – Result of the model. Note that values myst either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

Raises NotImplementedError – If no run method have been implemented or set to a func-
tion.

Notes

The run method must either be implemented or set to a function. Both options have the following require-
ments:

1. Input. The model function takes a number of arguments which define the uncertain parameters of the
model.

2. Run the model. The model must then be run using the parameters given as arguments.

3. Output. The model function must return at least two objects, the model time (or equivalent, if ap-
plicable) and model output. Additionally, any number of optional info objects can be returned. In
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Uncertainpy, we refer to the time object as time, the model output object as values, and the re-
maining objects as info. Note that while we refer to these objects as time, values and info in
Uncertainpy, it does not matter what you call the objects returned by the run function.

1. Time (time). The time can be interpreted as the x-axis of the model. It is used when interpo-
lating (see below), and when certain features are calculated. We can return None if the model has
no time associated with it.

2. Model output (values). The model output must either be regular, or it must be possible to
interpolate or postprocess the output to a regular form.

3. Additional info (info). Some of the methods provided by Uncertainpy, such as the later defined
model postprocessing, feature preprocessing, and feature calculations, require additional infor-
mation from the model (e.g., the time a neuron receives an external stimulus). We recommend to
use a single dictionary as info object, with key-value pairs for the information, to make debugging
easier. Uncertainpy always uses a single dictionary as the info object. Certain features require
that specific keys are present in this dictionary.

The model does not need to be implemented in Python, you can use any model/simulator as long as you
are able to set the model parameters of the model from the run method Python and return the results from
the model into the run method.

If you want to calculate features directly from the original model results, but still need to postprocess
the model results to perform the uncertainty quantification, you can implement the postprocessing in the
postprocess method.

See also:

uncertainpy.features

uncertainpy.features.Features.preprocess Preprocessing of model results before fea-
ture calculation

uncertainpy.model.Model.postprocess Postprocessing of model result.

set_parameters(**parameters)
Set all named arguments as attributes of the model class.

Parameters **parameters (A number of named arguments (name=value).) – All set as at-
tributes of the class.

validate_postprocess(postprocess_result)
Validate the results from postprocess.

This method ensures that postprocess returns time and values.

Parameters model_results – Any type of postprocessed model results returned by
postprocess.

Raises

• ValueError – If the postprocessed model result does not fit the requirements.

• TypeError – If the postprocessed model result does not fit the requirements.

Notes

Tries to verify that time and values are returned from postprocess. postprocess must return two
objects on the format: return time, values, where:

• time_postprocessed [{None, numpy.nan, array_like}.] The first object is the post-
processed time (or equivalent) of the model. We can return None if the model has no time. Note
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that the automatic interpolation of the postprocessed time can only be performed if a postpro-
cessed time is returned (if an interpolation is required).

• values_postprocessed [array_like.] The second object is the postprocessed model out-
put.

Both of these must be regular or on a form that can be interpolated.

See also:

uncertainpy.models.Model.postprocess()

validate_run(model_result)
Validate the results from run.

This method ensures run returns time, values, and optional info objects.

Parameters model_results – Any type of model results returned by run.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time : {None, numpy.nan, array_like}. Time values of the model. If no time values it
should return None or numpy.nan.

• values : array_like Result of the model.

• info, optional. Any number of info objects that is passed on to feature calculations. It is recom-
mended to use a single dictionary with the information stored as key-value pairs. This is what the
implemented features requires, as well as require that specific keys to be present.

See also:

uncertainpy.models.Model.run()

6.2 NeuronModel

NEURON is a widely used simulator for multi-compartmental neural models. Uncertainpy has support for NEURON
models through the NeuronModel class, a subclass of Model. Among others, NeuronModel takes the arguments:

model = un.NeuronModel(path="path/to/neuron_model",
interpolate=True,
stimulus_start=1000, # ms
stimulus_end=1900) # ms

path is the path to the folder where the NEURON model is saved (the location of the mosinit.hoc file).
interpolate indicates whether the NEURON model uses adaptive time steps. stimulus_start and
stimulus_end denotes the start and end time of any stimulus given to the neuron. NeuronModel loads the
NEURON model from mosinit.hoc, sets the parameters of the model, evaluates the model and returns the somatic
membrane potential of the neuron. NeuronModel therefore does not require a model function. An example of a
NEURON model analysed with Uncertainpy is found in the interneuron example.
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If changes are needed to the standard NeuronModel, such as measuring the voltage from other locations than the
soma, or recalculate properties after the parameters have been set, the Model class with an appropriate model function
should be used instead. Alternatively, NeuronModel can be subclassed and the existing methods customized as
required. An example of the later is shown in /examples/bahl/ .

6.2.1 API Reference

class uncertainpy.models.NeuronModel(file=u’mosinit.hoc’, path=u”, interpolate=True, stim-
ulus_start=None, stimulus_end=None, name=None,
ignore=False, run=None, record_from=u’soma’, la-
bels=[u’Time (ms)’, u’Membrane potential (mV)’], sup-
press_graphics=True, logger_level=u’info’, info={},
**model_kwargs)

Class for Neuron simulator models.

Loads a Neuron simulation, runs it, and measures the voltage in the soma.

Parameters

• file (str, optional) – Filename of the Neuron model. Default is "mosinit.hoc".

• path (str, optional) – Path to the Neuron model. If None, the file is considered to be in the
current folder. Default is “”.

• stimulus_start ({int, float, None}, optional) – The start time of any stimulus given to the
neuron model. This is added to the info dictionary. If None, no stimulus_start is added to
the info dictionary. Default is None.

• stimulus_end ({int, float, None}, optional) – The end time of any stimulus given to the
neuron model. This is added to the info dictionary. If None, no stimulus_end is added to the
info dictionary. Default is None.

• interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• name ({None, str}, optional) – Name of the model, if None the model gets the name of the
current class. Default is None.

• ignore (bool, optional) – Ignore the model results when calculating uncertainties, which
means the uncertainty is not calculated for the model. Default is False.

• run ({None, callable}, optional) – A function that implements the model. See the run
method for requirements of the function. Default is None.

• record_from ({str}, optional) – Name of the section in the NEURON model where voltage
should be recorded. Default is "soma".

• labels (list, optional) – A list of label names for the axes when plotting the model. On
the form ["x-axis", "y-axis", "z-axis"], with the number of axes that is
correct for the model output. Default is ["Time (ms)", "Membrane potential
(mv)"].

• suppress_graphics (bool, optional) – Suppress all graphics created by the Neuron model.
Default is True.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed Default logger level is “info”.

• info (dict, optional) – Dictionary added to info. Default is an empty dictionary.
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• **model_kwargs – Any number of arguments passed to the model function when it is run.

Variables

• run (uncertainpy.models.Model.run) –

• labels (list) – A list of label names for the axes when plotting the model. On the form
["x-axis", "y-axis", "z-axis"], with the number of axes that is correct for the
model output.

• interpolate (bool) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• suppress_graphics (bool) – Suppress all graphics created by the model.

• ignore (bool) – Ignore the model results when calculating uncertainties, which means
the uncertainty is not calculated for the model. The model results are still postprocessed if
a postprocessing is implemented. Default is False.

Raises RuntimeError – If no section with name soma is found in the Neuron model.

Notes

Measures the voltage in the section with name soma.

evaluate(**parameters)
Run the model with parameters and default model_kwargs options, and validate the result.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the model, either setting them with
Python, or assigning them to the simulator.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – Result of the model. Note that values myst either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

load_neuron(path, file)
Import neuron and a neuron simulation file.

Parameters

• file (str) – Filename of the Neuron model. must be a .hoc file.

• path (str) – Path to the Neuron model.

Returns h – Neurons h object.

Return type Neuron object
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Raises ImportError – If neuron is not installed.

load_python(path, file, name)
Import a Python neuron simulation located in function in path/file with name name.

Parameters

• file (str) – Filename of the Neuron model. must be a .hoc file.

• path (str) – Path to the Neuron model.

• name (str) – Name of the run function.

Returns model – A python function imported from path/file with name name.

Return type a run function

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

postprocess(time, values, info)
Postprocessing of the time and results from the Neuron model is generally not needed. The direct model
result except the info is returned.

Parameters

• time (array_like) – Time values of the Neuron model.

• values (array_like) – Voltage of the neuron.

• info (dict) – Dictionary with information needed by features.

Returns

• time (array_like) – Time values of the Neuron model.

• values (array_like) – Voltage of the neuron.

run
Run the model and return time and model result.

This method must either be implemented or set to a function and is responsible for running the model. See
Notes for requirements.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the model, either setting them with
Python, or assigning them to the simulator.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – Result of the model. Note that values myst either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

Raises NotImplementedError – If no run method have been implemented or set to a func-
tion.
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Notes

The run method must either be implemented or set to a function. Both options have the following require-
ments:

1. Input. The model function takes a number of arguments which define the uncertain parameters of the
model.

2. Run the model. The model must then be run using the parameters given as arguments.

3. Output. The model function must return at least two objects, the model time (or equivalent, if ap-
plicable) and model output. Additionally, any number of optional info objects can be returned. In
Uncertainpy, we refer to the time object as time, the model output object as values, and the re-
maining objects as info. Note that while we refer to these objects as time, values and info in
Uncertainpy, it does not matter what you call the objects returned by the run function.

1. Time (time). The time can be interpreted as the x-axis of the model. It is used when interpo-
lating (see below), and when certain features are calculated. We can return None if the model has
no time associated with it.

2. Model output (values). The model output must either be regular, or it must be possible to
interpolate or postprocess the output to a regular form.

3. Additional info (info). Some of the methods provided by Uncertainpy, such as the later defined
model postprocessing, feature preprocessing, and feature calculations, require additional infor-
mation from the model (e.g., the time a neuron receives an external stimulus). We recommend to
use a single dictionary as info object, with key-value pairs for the information, to make debugging
easier. Uncertainpy always uses a single dictionary as the info object. Certain features require
that specific keys are present in this dictionary.

The model does not need to be implemented in Python, you can use any model/simulator as long as you
are able to set the model parameters of the model from the run method Python and return the results from
the model into the run method.

If you want to calculate features directly from the original model results, but still need to postprocess
the model results to perform the uncertainty quantification, you can implement the postprocessing in the
postprocess method.

See also:

uncertainpy.features

uncertainpy.features.Features.preprocess Preprocessing of model results before fea-
ture calculation

uncertainpy.model.Model.postprocess Postprocessing of model result.

run_neuron(**parameters)
Load and run a Neuron simulation from a .hoc file and return the model voltage in soma.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model which are set in Neuron.

Returns

• time (array) – Time values of the model.

• values (array) – Voltage of the neuron. Note that values must either be regular (have the
same number of points for different parameters) or be able to be interpolated.

• info (dictionary) – A dictionary with information needed by features. Efel features require
"stimulus_start" and "stimulus_end" as keys, while spiking_features require
stimulus_start".
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• info (dictionary) – A dictionary with information needed by features.
"stimulus_start" and "stimulus_end" are returned in the info dictionary
if they are given as parameters to NeuronModel.

Notes

Efel features require "stimulus_start" and "stimulus_end" as keys, while spiking_features
require stimulus_start".

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

run_python(**parameters)
Load and run a Python function that contains a Neuron simulation and return the model result. The Python
neuron simulation is located in a function in path/file and name name.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model which are sent to the Python function.

Returns

• time (array) – Time values of the model.

• values (array) – Voltage of the neuron. Note that values must either be regular (have the
same number of points for different parameters) or be able to be interpolated.

• info (dictionary) – A dictionary with information needed by features. If a info dictio-
nary is returned by the model function it is updated with "stimulus_start" and
"stimulus_end" if they are given as parameters to NeuronModel. If a info dictio-
nary is not returned, a info dictionary is added as the third return argument.

Notes

Efel features require "stimulus_start" and "stimulus_end" as keys, while spiking_features
require stimulus_start".

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

set_parameters(parameters)
Set parameters in the neuron model.

Parameters parameters (dict) – A dictionary with parameter names as keys and the parameter
value as value.

validate_postprocess(postprocess_result)
Validate the results from postprocess.

This method ensures that postprocess returns time and values.

Parameters model_results – Any type of postprocessed model results returned by
postprocess.

Raises

• ValueError – If the postprocessed model result does not fit the requirements.

• TypeError – If the postprocessed model result does not fit the requirements.
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Notes

Tries to verify that time and values are returned from postprocess. postprocess must return two
objects on the format: return time, values, where:

• time_postprocessed [{None, numpy.nan, array_like}.] The first object is the post-
processed time (or equivalent) of the model. We can return None if the model has no time. Note
that the automatic interpolation of the postprocessed time can only be performed if a postpro-
cessed time is returned (if an interpolation is required).

• values_postprocessed [array_like.] The second object is the postprocessed model out-
put.

Both of these must be regular or on a form that can be interpolated.

See also:

uncertainpy.models.Model.postprocess()

validate_run(model_result)
Validate the results from run.

This method ensures run returns time, values, and optional info objects.

Parameters model_results – Any type of model results returned by run.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time : {None, numpy.nan, array_like}. Time values of the model. If no time values it
should return None or numpy.nan.

• values : array_like Result of the model.

• info, optional. Any number of info objects that is passed on to feature calculations. It is recom-
mended to use a single dictionary with the information stored as key-value pairs. This is what the
implemented features requires, as well as require that specific keys to be present.

See also:

uncertainpy.models.Model.run()

6.3 NestModel

NEST is a simulator for large networks of spiking neurons. NEST models are supported through the NestModel
class, another subclass of Model:

model = un.NestModel(run=nest_model_function)

NestModel requires the model function to be specified through the run argument, unlike NeuronModel. The
NEST model function has the same requirements as a regular model function, except it is restricted to return only
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two objects: the final simulation time (denoted simulation_end), and a list of spike times for each neuron in the
network, which we refer to as spiketrains (denoted spiketrains).

A spike train returned by a NEST model is a set of irregularly spaced time points where a neuron fired a spike. NEST
models therefore require postprocessing to make the model output regular. Such a postprocessing is provided by the
implemented postprocess()method, which converts a spiketrain to a list of zeros (no spike) and ones (a spike) for
each time step in the simulation. For example, if a NEST simulation returns the spiketrain [0, 2, 3.5], it means
the neuron fired three spikes occurring at 𝑡 = 0, 2, and 3.5 ms. If the simulation have a time resolution of 0.5 ms and
ends after 4 ms, NestModel.postprocess returns the postprocessed spiketrain [1, 0, 0, 0, 1, 0, 0,
1, 0], and the postprocessed time array [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]. The final uncertainty
quantification of a NEST network therefore predicts the probability for a spike to occur at any specific time point in
the simulation. An example on how to use NestModel is found in the Brunel exampel.

6.3.1 API Reference

class uncertainpy.models.NestModel(run=None, interpolate=False, ignore=False, la-
bels=[u’Time (ms)’, u’Neuron nr’, u’Spiking probability’],
logger_level=u’info’, **model_kwargs)

Class for NEST simulator models.

The run method must either be implemented or set to a function, and is responsible for running the NEST
model.

Parameters

• run ({None, function}, optional) – A function that implements the model. See Note for
requirements of the function. Default is None.

• interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• ignore (bool, optional) – Ignore the model results when calculating uncertainties, which
means the uncertainty is not calculated for the model. Default is False.

• labels (list, optional) – A list of label names for the axes when plotting the model. On
the form ["x-axis", "y-axis", "z-axis"], with the number of axes that is cor-
rect for the model output. Default is ["Time (ms)", "Neuron nr", "Spiking
probability"].

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed. Default logger level is “info”.

• **model_kwargs – Any number of arguments passed to the model function when it is run.

Variables

• run (uncertainpy.models.Model.run) –

• labels (list, optional) – A list of label names for the axes when plotting the model.

• interpolate (bool) – True if the model is irregular, meaning it has a varying number
of return values between different model evaluations, and an interpolation of the results is
performed. Default is False.

• ignore (bool, optional) – Ignore the model results when calculating uncertainties,
which means the uncertainty is not calculated for the model. The model results are still
postprocessed. Default is False.

Raises ImportError – If nest is not installed.
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See also:

uncertainpy.models.NestModel.run

evaluate(**parameters)
Run the model with parameters and default model_kwargs options, and validate the result.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the model, either setting them with
Python, or assigning them to the simulator.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns
None or numpy.nan.

• values (array_like) – Result of the model. Note that values myst either be regular (have
the same number of points for different paramaters) or be able to be interpolated.

• info, optional – Any number of info objects that is passed on to feature calculations. It
is recommended to use a single dictionary with the information stored as key-value pairs.
This is what the implemented features requires, as well as require that specific keys to be
present.

See also:

uncertainpy.models.Model.run() Requirements for the model run function.

postprocess(simulation_end, spiketrains)
Postprocessing of the spiketrains from a Nest model.

For each neuron, convert a spiketrain to a list of the probability for a spike at each timestep, as well as
creating a time array. For each timestep in the simulation the result is 0 if there is no spike and 1 if there is
a spike.

Parameters

• simulation_end ({int, float}) – The final simulation time.

• spiketrains (list) – A list of spike trains for each neuron.

Returns

• time (array) – A time array of all time points in the Nest simulation.

• spiketrains (list) – A list of the probability for a spike at each timestep, for each neuron.

Example

In a simulation that gives the spiketrain [0, 2, 3], with a time resolution of 0.5 ms and that ends after
4 ms, the resulting spike train become: [1, 0, 0, 0, 1, 0, 1, 0, 0].

run
Run a Nest model and return the final simulation time and the spiketrains.

This method must either be implemented or set to a function and is responsible for running the model. See
Notes for requirements.

Parameters **parameters (A number of named arguments (name=value).) – The parameters
of the model. These parameters must be assigned to the NEST model.

Returns
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• simulation_end ({int, float}) – The final simulation time.

• spiketrains (list) – A list of spike trains for each neuron.

Raises NotImplementedError – If no runmethod have been implemented or set to a func-
tion.

Notes

The run method must either be implemented or set to a function. Both options have the following require-
ments:

1. Input. The model function takes a number of arguments which define the uncertain parameters of the
model.

2. Run the model. The NEST model must then be run using the parameters given as arguments.

3. Output. The model function must return:

1. Time (simulation_end). The final simulation time of the NEST model.

2. Model output (spiketrains). A list if spike trains from each recorded neuron.

The model results simulation_end and spiketrains are used to calculate the features, and is postprocessed
to create a regular result before the calculating the uncertainty of the model.

See also:

uncertainpy.model.Model.postprocess

set_parameters(**parameters)
Set all named arguments as attributes of the model class.

Parameters **parameters (A number of named arguments (name=value).) – All set as at-
tributes of the class.

validate_postprocess(postprocess_result)
Validate the results from postprocess.

This method ensures that postprocess returns time and values.

Parameters model_results – Any type of postprocessed model results returned by
postprocess.

Raises

• ValueError – If the postprocessed model result does not fit the requirements.

• TypeError – If the postprocessed model result does not fit the requirements.

Notes

Tries to verify that time and values are returned from postprocess. postprocess must return two
objects on the format: return time, values, where:

• time_postprocessed [{None, numpy.nan, array_like}.] The first object is the post-
processed time (or equivalent) of the model. We can return None if the model has no time. Note
that the automatic interpolation of the postprocessed time can only be performed if a postpro-
cessed time is returned (if an interpolation is required).

• values_postprocessed [array_like.] The second object is the postprocessed model out-
put.
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Both of these must be regular or on a form that can be interpolated.

See also:

uncertainpy.models.Model.postprocess()

validate_run(model_result)
Validate the results from run.

This method ensures run returns time, values, and optional info objects.

Parameters model_results – Any type of model results returned by run.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time : {None, numpy.nan, array_like}. Time values of the model. If no time values it
should return None or numpy.nan.

• values : array_like Result of the model.

• info, optional. Any number of info objects that is passed on to feature calculations. It is recom-
mended to use a single dictionary with the information stored as key-value pairs. This is what the
implemented features requires, as well as require that specific keys to be present.

See also:

uncertainpy.models.Model.run()

6.4 Multiple model outputs

Uncertainpy is usable with multiple model outputs. However, it does unfortunately not have direct support for this,
you have to use a small trick. Uncertainpy by default only performs an uncertainty quantification of the first model
output returned. But you can return the additional model outputs in the info dictionary, and then define new features
that extract each model output from the info dictionary, and then returns the additional model output.

Here is an example that shows how to do this:

import uncertainpy as un
import chaospy as cp

# Example model with multiple outputs
def example_model(parameter_1, parameter_2):

# Perform all model calculations here

time = ...

model_output_1 = ...
model_output_2 = ...
model_output_3 = ...

(continues on next page)
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(continued from previous page)

# We can store the additional model outputs in an info
# dictionary
info = {"model_output_2": model_output_2,

"model_output_3": model_output_3}

# Return time, model output and info dictionary
# The first model output (model_output_1) is automatically used in the
# uncertainty quantification
return time, model_output_1, info

We can perform an uncertainty quantification of the other model outputs by creating a feature for each of the additional
model outputs by extracting the output from the info dictionary and then return the output:

def model_output_2(time, model_output_1, info):
return time, info["model_output_2"]

def model_output_3(time, model_output_1, info):
return time, info["model_output_3"]

feature_list = [model_output_2, model_output_3]

# Define the parameter dictionary
parameters = {"parameter_1": cp.Uniform(),

"parameter_2": cp.Uniform()}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=example_model,

parameters=parameters,
features=feature_list)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
data = UQ.quantify()

Alternatively, we can directly return all model outputs, but you are then unable to use the built-in features in Uncer-
tainpy:

# Example model with multiple outputs
def example_model(parameter_1, parameter_2):

# Perform all model calculations here

time = ...

model_output_1 = ...
model_output_2 = ...
model_output_3 = ...

# Return time, model output and info dictionary
# The first model output (model_output_1) is automatically used in the
# uncertainty quantification

return time, model_output_1, model_output_2, model_output_3

# We can perform an uncertainty quantification of the other model
# outputs by creating a feature for each of the additional
# model outputs by extracting the output from the info dictionary and

(continues on next page)
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(continued from previous page)

# then return the output

def model_output_2(time, model_output_1, model_output_2, model_output_3):
return time, model_output_2

def model_output_3(time, model_output_1, model_output_2, model_output_3):
return time, model_output_3
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Parameters

The parameters of a model are defined by two properties they must have (i) a name and (ii) either a fixed value or a
distribution. It is important that the name of the parameter is the same as the name given as the input argument in
the model function. A parameter is considered uncertain if it has a probability distribution, and the distributions are
given as Chaospy distributions. 64 different univariate distributions are defined in Chaospy. For a list of available
distributions and detailed instructions on how to create probability distributions with Chaospy, see Section 3.3 in the
Chaospy paper.

The parameters are defined by the Parameters class. Parameters takes the argument parameters. parameters can
be on many different forms, but the most useful is a dictionary with the above information, the names of the parameters
are the keys, and the fixed values or distributions of the parameters are the values. As an example, if we have two
parameters, where the first is named name_1 and has a uniform probability distributions in the interval [8, 16], and
the second is named name_2 and has a fixed value 42, the list become:

import chaospy as cp
parameters = {"name_1": cp.Uniform(8, 16), "name_2": 42}

And Parameters is initialized:

parameters = un.Parameters(parameters=parameters)

The other possible forms that parameters can take are:

• {name_1: parameter_object_1, name: parameter_object_2, ...}

• {name_1: value_1 or Chaospy distribution, name_2: value_2 or Chaospy
distribution, ...}

• [parameter_object_1, parameter_object_2, ...],

• [[name_1, value_1 or Chaospy distribution], ...].

• [[name_1, value_1, Chaospy distribution or callable that returns a Chaospy
distribution], ...]

Where name is the name of the parameter and parameter_object is a Parameter object (see below). The
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parameter argument in UncertaintyQuantification is either Parameters object, or a parameters dic-
tionary/list as shown above.

Each parameter in Parameters is a Parameter object. Each Parameter object is responsible for storing the name
and fixed value and/or distribution of each parameter. It is initialized as:

parameter = Parameter(name="name_1", distribution=cp.Uniform(8, 16))

In general you should not need to use Parameter, it is mainly for internal use in Uncertainpy

7.1 API Reference

7.1.1 Parameters

class uncertainpy.Parameters(parameters={}, distribution=None)
A collection of parameters.

Has all standard dictionary methods implemented, such as items, value, contains and similar implemented. As
such, behaves as an ordered dictionary.

Parameters

• parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribu-
tion}, . . . ], list of Parameter instances, list [[name, value or Chaospy distribution], . . . ], list
[[name, value, Chaospy distribution or callable that returns a Chaospy distribution],. . . ],})
– List or dictionary of the parameters that should be created. On the form parameters =

– {name_1: parameter_object_1, name: parameter_object_2,
...}

– {name_1: value_1 or Chaospy distribution, name_2: value_2
or Chaospy distribution, ...}

– [parameter_object_1, parameter_object_2, ...],

– [[name_1, value_1 or Chaospy distribution], ...].

– [[name_1, value_1, Chaospy distribution or callable that
returns a Chaospy distribution], ...]

• distribution ({None, multivariate Chaospy distribution}, optional) – A multivariate distri-
bution of all parameters, if it exists, it is used instead of individual distributions. Defaults to
None.

Variables

• parameters (dict) – A dictionary of parameters with name as key and Parameter object
as value.

• distribution ({None, multivariate Chaospy distribution},
optional) – A multivariate distribution of all parameters, if it exists, it is used
instead of individual distributions. Defaults to None.

Notes

Both parameter values and parameter distributions must be set if uncertainpy.UncertaintyQuantification.quantify
is run with single=True, meaning the uncertainty quantification should be performed with only one uncertain
parameter at the time.
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See also:

uncertainpy.Parameter

__delitem__(name)
Delete parameter with name.

Parameters name (str) – Name of parameter.

__getitem__(name)
Return Parameter object with name.

Parameters name (str) – Name of parameter.

Returns The parameter object with name.

Return type Parameter object

__iter__()
Iterate over the parameter objects.

Yields Parameter object – A parameter object.

__len__()
Get the number of parameters.

Returns The number of parameters.

Return type int

__setitem__(name, parameter)
Set parameter with name.

Parameters

• name (str) – Name of parameter.

• parameter (Parameter object) – The parameter object of name.

__str__()
Convert all parameters to a readable string.

Returns A readable string of all parameter objects.

Return type str

clear()→ None. Remove all items from D.

get(attribute=u’name’, parameter_names=None)
Return attributes from all parameters.

Return a list of attributes (name, value, or distribution) from each parameters (parameters that
have a distribution).

Parameters

• attribute ({“name”, “value”, “distribution”}, optional) – The name of the attribute to be
returned from each uncertain parameter. Default is name.

• parameter_names ({None, list, str}, optional) – A list of all parameters of which attribute
should be returned, or a string for a single parameter. If None, the attribute all parameters
are returned. Default is None.

Returns List containing the attribute of each parameters.

Return type list
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get_from_uncertain(attribute=u’name’)
Return attributes from uncertain parameters.

Return a list of attributes (name, value, or distribution) from each uncertain parameters (parame-
ters that have a distribution).

Parameters attribute ({“name”, “value”, “distribution”}, optional) – The name of the at-
tribute to be returned from each uncertain parameter. Default is name.

Returns List containing the attribute of each uncertain parameters.

Return type list

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

reset_parameter_file(filename)
Set all parameters to their value in a parameter file.

For all parameters, search filename for occurrences of parameter_name = number and replace
number with value of that parameter.

Parameters filename (str) – Name of file.

set_all_distributions(distribution)
Set the distribution of all parameters.

Parameters distribution ({None, Chaospy distribution, Function that returns a Chaospy distri-
bution}) – The distribution of the parameter.

set_distribution(parameter, distribution)
Set the distribution of a parameter.

Parameters

• parameter (str) – Name of parameter.

• distribution ({None, Chaospy distribution, Function that returns a Chaospy distribution})
– The distribution of the parameter.

set_parameters_file(filename, parameters)
Set listed parameters to their value in a parameter file.

For each parameter listed in parameters, search filename for occurrences of parameter_name =
number and replace number with value of that parameter.

Parameters

• filename (str) – Name of file.

• parameters (list) – List of parameter names.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D
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update([E ], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ list of D’s values

7.1.2 Parameter

class uncertainpy.Parameter(name, value=None, distribution=None)
Parameter object, contains name of parameter, value of parameter and distribution of parameter.

Parameters

• name (str) – Name of the parameter.

• value (float, int, None) – The fixed value of the parameter. If you give a parameter a distri-
bution, in most cases you do not need to give it a fixed value.

• distribution ({None, Chaospy distribution, Function that returns a Chaospy distribution},
optional) – The distribution of the parameter. A parameter is considered uncertain if it has
a distribution. Defaults to None.

Variables

• name (str) – Name of the parameter.

• value (float, int) – The value of the parameter.

• distribution (uncertainpy.Parameter.distribution) – The distribution
of the parameter. A parameter is considered uncertain if it has a distribution.

__str__()
Return a readable string describing the parameter.

Returns A string containing name, value, and if a parameter is uncertain.

Return type str

distribution
A Chaospy distribution or a function that returns a Chaospy distribution. If None the parameter has no
distribution and is not considered uncertain.

Parameters distribution ({None, Chaospy distribution, callable that returns a Chaospy dis-
tribution}, optional) – The distribution of the parameter, used if the parameter is uncertain
If it is a callable that returns a Chaospy distribution, the function sends value value to the
function. Defaults to None.

Returns distribution – The distribution of the parameter, if None the parameter has no distri-
bution and is not considered uncertain.

Return type {Chaospy distribution, None}

reset_parameter_file(filename)
Set all parameters to the original value in the parameter file, filename.

Parameters filename (str) – Name of file.

set_parameter_file(filename, value)
Set parameters to given value in a parameter file.

Search filename for occurrences of name = number and replace number with value.

Parameters
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• filename (str) – Name of file.

• value (float, int) – New value to set in parameter file.
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Features

The activity of a biological system typically varies between recordings, even if the experimental conditions are main-
tained constant to the highest degree possible. Since the experimental data displays such variation, it is often meaning-
less (or even misguiding) to base the success of a computational model on a direct point-to-point comparison between
the experimental data and model output (Druckmann et al., 2007; Van Geit et al., 2008). A common modeling practice
is therefore to rather have the model reproduce essential features of the experimentally observed dynamics, such as
the action potential shape, or action potential firing rate (Druckmann et al., 2007). Such features are typically more
robust between different experimental measurements, or between different model simulations, than the raw data or
raw model output, at least if sensible features have been chosen.

Uncertainpy takes this aspect of neural modeling into account, and is constructed so it can extract a set of features
relevant for various common model types in neuroscience from the raw model output. Examples include the ac-
tion potential shape in single neuron models, or the average interspike interval in network models. If we give the
features argument to UncertaintyQuantification, Uncertainpy will perform uncertainty quantification and sensi-
tivity analysis of the given features, in addition to the analysis of the “raw” output data. The value of feature based
analysis is illustrated in the two examples on a multi-compartment model of a thalamic interneuron and a sparsely
connected recurrent network.

The main class is Features. This class does not implement any specific features itself, but contain all common methods
used by features. It is also used when creating custom features. Three sets of features comes pre-defined with Un-
certainpy. Two sets of features for spiking models that returns voltage traces: SpikingFeatures and EfelFeatures. And
one set of features for network models that return spiketrains NetworkFeatures Then there are two general classes for
spiking (GeneralSpikingFeatures) and network features (GeneralNetworkFeatures) that implements common meth-
ods used by the two spiking features and network features respectively. These classes does not implement any specific
models themselves.

8.1 Features

The Features class is used when creating custom features. Additionally it contains all common methods used by
all features. The most common arguments to Features are:
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list_of_feature_functions = [example_feature]

features = un.Features(new_features=list_of_feature_functions,
features_to_run=["example_feature"],
preprocess=example_preprocess,
interpolate=["example_feature"])

new_features is a list of Python functions that each calculates a specific feature, whereas features_to_run
tells which of the features to perform uncertainty quantification of. If nothing is specified, the uncertainty quantifi-
cation is by default performed on all features (features_to_run="all"). preprocess() requires a Python
function that performs common calculations for all features. interpolate is a list of features that must be interpo-
lated. As with models, Uncertainpy automatically interpolates the output of such features to a regular form. Below we
first go into details on the requirements of a feature function, and then the requirements of a preprocess function.

8.1.1 Feature functions

A specific feature is given as a Python function. The outline of such a feature function is:

def example_feature(time, values, info):
# Calculate the feature using time, values and info.

# Return the feature times and values.
return time_feature, values_feature

Feature functions have the following requirements:

1. Input. The feature function takes the objects returned by the model function as input, except in the case when a
preprocess function is used (see below). In that case, the feature function instead takes the objects returned
by the preprocess function as input preprocess is normally not used.

2. Feature calculation. The feature function calculates the value of a feature from the data given in time,
values and optional info objects. As previously mentioned, in all built-in features in Uncertainpy, info is
a dictionary containing required information as key-value pairs.

3. Output. The feature function must return two objects:

1. Feature time (time_feature). The time (or equivalent) of the feature. We can return None instead
for features where it is not relevant.

2. Feature values (values_feature). The result of the feature calculation. As for the model output, the
feature results must be regular, or able to be interpolated. If there are no feature results for a specific model
evaluation (e.g., if the feature was spike width and there was no spike), the feature function can return
None. The specific feature evaluation is then discarded in the uncertainty calculations.

As with models, we can as a shortcut give a list of feature functions as the feature argument in
UncertaintyQuantification, instead of first having to create a Features instance.

8.1.2 Feature preprocessing

Some of the calculations needed to quantify features may overlap between different features. One example is find-
ing the spike times from a voltage trace. The preprocess function is used to avoid having to perform the same
calculations several times. An example outline of a preprocess function is:

def preprocess(time, values, info):
# Perform all common feature calculations using time,

(continues on next page)
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(continued from previous page)

# values, and info returned by the model function.

# Return the preprocessed model output and info.
return time_preprocessed, values_preprocessed, info

The requirements for a preprocess function are:

1. Input. A preprocess function takes the objects returned by the model function as input.

2. Preprocesssing. The model output time, values, and additional info objects are used to perform all pre-
process calculations.

3. Output. The preprocess function can return any number of objects as output. The returned preprocess
objects are used as input arguments to the feature functions, so the two must be compatible.

This figure illustrates how the objects returned by the model function are passed to preprocess, and the returned
preprocess objects are used as input arguments in all feature functions. Functions associated with the model are in red
while functions associated with features are in green. The preprocessing makes it so feature functions have different
required input arguments depending on the feature class they are added to. As mentioned earlier, Uncertainpy comes
with three built-in feature classes. These classes all take the new_features argument, so custom features can be
added to each set of features. These feature classes perform a preprocessing, and therefore have different requirements
for the input arguments of new feature functions. Additionally, certain features require specific keys to be present
in the info dictionary. Each class has a reference_feature method that states the requirements for feature
functions of that class in its docstring.

8.1.3 API Reference

class uncertainpy.features.Features(new_features=None, features_to_run=u’all’,
new_utility_methods=None, interpolate=None, la-
bels={}, preprocess=None, logger_level=u’info’)

Class for calculating features of a model.

Parameters

• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.
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• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods
in this class that is not in the list of utility methods, is considered to be a feature. Default is
None.

• interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregu-
lar, meaning they have a varying number of time points between evaluations. An interpola-
tion is performed on each irregular feature to create regular results. If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features to be interpolated.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

See also:

uncertainpy.features.Features.reference_feature reference_feature showing the require-
ments of a feature function.

add_features(new_features, labels={})
Add new features.

Parameters

• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

76 Chapter 8. Features



Uncertainpy Documentation, Release 1.2.3

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.

Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.

Parameters

• feature_name (str) – Name of feature to calculate.

• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.
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• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method

calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list

implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.
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Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.

Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

preprocess
Preprossesing of the time time and results values from the model, before the features are calculated.

No preprocessing is performed, and the direct model results are currently returned. If preprocessing is
needed it should follow the below format.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns Returns any number of values that are sent to each feature. The values returned must
compatible with the input arguments of all features.

Return type preprocess_results

Notes

Perform a preprossesing of the model results before the results are sent to the calculation of each feature.
It is used to perform common calculations that each feature needs to perform, to reduce the number of
necessary calculations. The values returned must therefore be compatible with the input arguments to each
features.

See also:

uncertainpy.models.Model.run The model run method

reference_feature(*preprocess_results)
An example feature. Feature function have the following requirements.

Parameters *preprocess_results – Variable length argument list. Is the values that
Features.preprocess returns. By default Features.preprocess returns the
same values as Model.run returns.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values return None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated. If there are no
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feature results return None or numpy.nan instead of values and that evaluation are disre-
garded.

See also:

uncertainpy.features.Features.preprocess() The features preprocess method.

uncertainpy.models.Model.run() The model run method

uncertainpy.models.Model.postprocess() The postprocessing method.

validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.

• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.

8.2 Spiking features

SpikingFeatures contains a set of features relevant for models of single neurons that receive an external
stimulus and responds by eliciting a series of action potentials, also called spikes. Many of these features re-
quire the start time and end time of the stimulus, which must be returned as info["stimulus_start"] and
info["stimulus_start"] in the model function. info is then used as an additional input argument in the
calculation of each feature. SpikingFeatures implements a preprocess() method, which locates spikes in
the model output.

The features included in the SpikingFeatures are briefly defined below. This set of features was taken from the
previous work of Druckmann et al., 2007, with the addition of the number of action potentials during the stimulus
period. We refer to the original publication for more detailed definitions.

1. nr_spikes – Number of action potentials (during stimulus period).

2. spike_rate – Action potential firing rate (number of action potentials divided by stimulus duration).

3. time_before_first_spike – Time from stimulus onset to first elicited action potential.
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4. accommodation_index – Accommodation index (normalized average difference in length of two consecu-
tive interspike intervals).

5. average_AP_overshoot – Average action potential peak voltage.

6. average_AHP_depth – Average afterhyperpolarization depth (average minimum voltage between action
potentials).

7. average_AP_width – Average action potential width taken at midpoint between the onset and peak of the
action potential.

A set of standard spiking features is already included in SpikingFeatures, but the user may want to add custom
features. The preprocess() method changes the input given to the feature functions, and as such each spiking
feature function has the following input arguments:

1. The time array returned by the model simulation.

2. An Spikes object (spikes) which contain the spikes found in the model output.

3. An info dictionary with info["stimulus_start"] and info["stimulus_end"] set.

The Spikes object is a preprocessed version of the model output, used as a container for Spike objects. In turn,
each Spike object contain information of a single spike. This information includes a brief voltage trace represented
by a time and a voltage (V) array that only includes the selected spike. The information in Spikes is used to
calculate each feature. As an example, let us assume we want to create a feature that is the time at which the first spike
in the voltage trace ends. Such a feature can be defined as follows:

def first_spike_end_time(time, spikes, info):
# Calculate the feature from the spikes object
spike = spikes[0] # Get the first spike
values_feature = spike.t[-1] # The last time point in the spike

return None, values_feature

This feature may now be used as a feature function in the list given to the new_features argument.

From the set of both built-in and user defined features, we may select subsets of features that we want to use in
the analysis of a model. Let us say we are interested in how the model performs in terms of the three features:
nr_spikes, average_AHP_depth and first_spike_end_time. A spiking features object that calculates
these features is created by:

features_to_run = ["nr_spikes",
"average_AHP_depth",
"first_spike_end_time"]

features = un.SpikingFeatures(new_features=[first_spike_end_time],
features_to_run=features_to_run)

8.2.1 API Reference

class uncertainpy.features.SpikingFeatures(new_features=None, features_to_run=u’all’,
interpolate=None, threshold=-30,
end_threshold=-10, extended_spikes=False,
trim=True, normalize=False,
min_amplitude=0, min_duration=0, la-
bels={}, strict=True, logger_level=u’info’)

Spiking features of a model result, works with single neuron models and voltage traces.

Parameters
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• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.

• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods
in this class that is not in the list of utility methods, is considered to be a feature. Default is
None.

• interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregu-
lar, meaning they have a varying number of time points between evaluations. An interpola-
tion is performed on each irregular feature to create regular results. If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

• threshold ({float, int, “auto”}, optional) – The threshold where the model result is consid-
ered to have a spike. If “auto” the threshold is set to the standard variation of the result.
Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Default is -10.

• extended_spikes (bool, optional) – If the found spikes should be extended further out than
the threshold cuttoff. If True the spikes is considered to start and end where the derivative
equals 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.

• normalize (bool, optional) – If the voltage traceshould be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold a
similar relative value. Default is False.

• min_amplitude ({int, float}, optional) – Minimum height for what should be considered a
spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered a
spike. Default is 0.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• strict (bool, optional) – If True, missing "stimulus_start" and "stimulus_end"
from info raises a ValueError. If False the simulation start time is used as
"stimulus_start" and the simulation end time is used for "stimulus_end". De-
fault is True.
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• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• spikes (Spikes) – A Spikes object that contain all spikes.

• threshold ({float, int}) – The threshold where the model result is considered to
have a spike.

• end_threshold ({int, float}) – The end threshold for a spike relative to the
threshold.

• extended_spikes (bool) – If the found spikes should be extended further out than the
threshold cuttoff.

• trim (bool) – If the spikes should be trimmed back from the termination threshold, so
each spike is equal the threshold at both ends.

• normalize (bool) – If the voltage traceshould be normalized before the spikes are found.
If normalize is used threshold must be between [0, 1], and the end_threshold a similar
relative value.

• min_amplitude ({int, float}) – Minimum height for what should be considered a
spike.

• min_duration ({int, float}) – Minimum duration for what should be considered
a spike.

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features to be interpolated.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

• strict (bool) – If missing info values should raise an error.

Raises ImportError – If scipy is not installed.

Notes

The implemented features are:

nr_spikes time_before_first_spike
spike_rate average_AP_overshoot
average_AHP_depth average_AP_width
accommodation_index average_duration

Most of the feature are from: Druckmann, S., Banitt, Y., Gidon, A. A., Schurmann, F., Markram, H., and
Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance- based neuron
models by experimental data. Frontiers in Neuroscience 1, 7-18. doi:10. 3389/neuro.01.1.1.001.2007

See also:

uncertainpy.features.Features.reference_feature reference_feature showing the require-
ments of a feature function.
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uncertainpy.features.Spikes Class for finding spikes in the model result.

accommodation_index(time, spikes, info)
The accommodation index.

The accommodation index is the average of the difference in length of two consecutive interspike intervals
normalized by the summed duration of the two interspike intervals.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – Not used in this feature.

Returns

• time (None)

• accommodation_index ({float, None}) – The accommodation index. Returns None if
there are less than two spikes in the model result.

Notes

The accommodation index is defined as:

𝐴 =
1

𝑁 − 𝑘 − 1

𝑁∑︁
𝑖=𝑘

ISI𝑖 − ISI𝑖−1

ISI𝑖 + ISI𝑖−1
,

where ISI is the interspike interval, N the number of spikes, and k is defined as:

𝑘 = min

{︂
4,

Number of ISIs
5

}︂
.

add_features(new_features, labels={})
Add new features.

Parameters

• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.
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Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

average_AHP_depth(time, spikes, info)
The average action potential depth.

The minimum of the model result between two consecutive spikes (action potentials).

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – Not used in this feature.

Returns

• time (None)

• average_AHP_depth ({float, None}) – The average action potential depth. Returns None
if there are no spikes in the model result.

average_AP_overshoot(time, spikes, info)
The average action potential overshoot,

The average of the absolute peak voltage values of all spikes (action potentials).

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – Not used in this feature.

Returns

• time (None)

• average_AP_overshoot ({float, None}) – The average action potential overshoot. Returns
None if there are no spikes in the model result.

average_AP_width(time, spikes, info)
The average action potential width.

The average of the width of every spike (action potential) at the midpoint between the start and maximum
of each spike.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – Not used in this feature.
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Returns

• time (None)

• average_AP_width ({float, None}) – The average action potential width. Returns None if
there are no spikes in the model result.

average_duration(time, spikes, info)
The average duration of an action potential, from the action potential onset to action potential termination.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – Not used in this feature.

Returns

• time (None)

• average_AP_width ({float, None}) – The average action potential width. Returns None if
there are no spikes in the model result.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.

Parameters

• feature_name (str) – Name of feature to calculate.

• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns
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• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method

calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_spikes(time, values, threshold=-30, end_threshold=-10, extended_spikes=False,
trim=True, normalize=False, min_amplitude=0, min_duration=0)

Calculating spikes of a model result, works with single neuron models and voltage traces.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• values (array_like) – Result of the model.

• threshold ({float, int, “auto”}, optional) – The threshold where the model result is con-
sidered to have a spike. If “auto” the threshold is set to the standard variation of the result.
Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Default is -10.

• extended_spikes (bool, optional) – If the found spikes should be extended further out than
the threshold cuttoff. If True the spikes is considered to start and end where the derivative
equals 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination thresh-
old, so each spike is equal the threshold at both ends. Default is True.
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• normalize (bool, optional) – If the voltage traceshould be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold a
similar relative value. Default is False.

• min_amplitude ({int, float}, optional) – Minimum height for what should be considered
a spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered
a spike. Default is 0.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it
returns None or numpy.nan.

• values (Spikes) – The spikes found in the model results.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

uncertainpy.features.Spikes() Class for finding spikes in the model result.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list

implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.

Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.
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Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

nr_spikes(time, spikes, info)
The number of spikes in the model result during the stimulus period.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – If strict=True, requires info["stimulus_start"] and
info['stimulus_end'] set.

Returns

• time (None)

• nr_spikes (int) – The number of spikes in the model result.

Raises

• ValueError – If strict is True and "stimulus_start" and "stimulus_end"
are missing from info.

• ValueError – If stimulus_start >= stimulus_end.

preprocess(time, values, info)
Calculating spikes from the model result.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• values (array_like) – Result of the model.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it
returns None or numpy.nan.

• values (Spikes) – The spikes found in the model results.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].

Notes

Also sets self.values = values, so features have access to self.values if necessary.

See also:

uncertainpy.models.Model.run() The model run method
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uncertainpy.features.Spikes() Class for finding spikes in the model result.

reference_feature(time, spikes, info)
An example of an GeneralSpikingFeature. The feature functions have the following requirements, and the
input arguments must either be returned by Model.run or SpikingFeatures.preprocess.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”] set.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values return None or numpy.nan.

• values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.

See also:

uncertainpy.features.GeneralSpikingFeatures.preprocess() The GeneralSpik-
ingFeatures preprocess method.

uncertainpy.models.Model.run() The model run method

spike_rate(time, spikes, info)
The spike rate of the model result.

Number of spikes divided by the duration.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – If strict=True, requires info["stimulus_start"] and
info['stimulus_end'] set.

Returns

• time (None)

• spike_rate (float) – The spike rate of the model result.

Raises

• ValueError – If strict is True and "stimulus_start" and "stimulus_end"
are missing from info.

• ValueError – If stimulus_start >= stimulus_end.

time_before_first_spike(time, spikes, info)
The time from the stimulus start to the first spike occurs.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.
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• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – If strict=True, requires info["stimulus_start"] set.

Returns

• time (None)

• time_before_first_spike ({float, None}) – The time from the stimulus start to the first
spike occurs. Returns None if there are no spikes on the model result.

Raises ValueError – If strict is True and "stimulus_start" and "stimulus_end"
are missing from info.

validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.

• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.

8.3 Spikes

Spikes is responsible for locating spikes in a voltage trace, and is a container for all spikes found. Each spike is
stored in a Spike object. Spikes is used in SpikingFeatures

8.3.1 API Reference

Spikes

class uncertainpy.features.Spikes(time=None, V=None, threshold=-30, end_threshold=-10,
extended_spikes=False, trim=True, normalize=False,
min_amplitude=0, min_duration=0, xlabel=u”, yla-
bel=u”)

Finds spikes in the given voltage trace and is a container for the resulting Spike objects.
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Parameters

• time (array_like) – The time of the voltage trace.

• V (array_like) – The voltage trace.

• threshold ({int, float, “auto”}) – The threshold for what is considered a spike. If the voltage
trace rise above and then fall below this threshold + end_threshold it is considered a spike.
If “auto” the threshold is set to the standard deviation of the voltage trace. Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Generally negative values give the best results. Default is -10.

• extended_spikes (bool) – If the spikes should be extended past the threshold, until the
derivative of the voltage trace is below 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.

• normalize (bool, optional) – If the voltage trace should be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold a
similar relative value. Default is False.

• min_amplitude ({int, float}, optional) – Minimum height for what should be considered a
spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered a
spike. Default is 0.

• xlabel (str, optional) – Label for the x-axis.

• ylabel (str, optional) – Label for the y-axis.

Variables

• spikes (list) – A list of Spike objects.

• nr_spikes (int) – The number of spikes.

• xlabel (str, optional) – Label for the x-axis.

• ylabel (str, optional) – Label for the y-axis.

• time (array_like) – The time of the voltage trace.

• V (array_like) – The voltage trace.

Notes

The spikes are found by finding where the voltage trace goes above the threshold, and then later falls below this
threshold + end_threshold. The spike is considered to be everything within this interval.

The spike can be extended. If extended_spikes is True, the spike is extended around the above area until the
derivative of the voltage trace falls below 0.5. This works badly with noisy voltage traces.

See also:

Spike The class for a single spike.

find_spikes Finding spikes in the voltage trace.

consecutive(data)
Returns the first consecutive array, from a discontinuous index array such as [2, 3, 4, 5, 12, 13, 14], which
returns [2, 3, 4, 5]
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Parameters data (array_like)

Returns The first consecutive array

Return type array_like

find_spikes(time, V, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, nor-
malize=False, min_amplitude=0, min_duration=0)

Finds spikes in the given voltage trace.

Parameters

• time (array_like) – The time of the voltage trace.

• V (array_like) – The voltage trace.

• threshold ({int, float, “auto”}) – The threshold for what is considered a spike. If the
voltage trace rise above and then fall below this threshold + end_threshold it is considered
a spike. If “auto” the threshold is set to the standard deviation of the voltage trace. Default
is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Generally negative values give the best results. Default is -10.

• extended_spikes (bool, optional) – If the spikes should be extended past the threshold,
until the derivative of the voltage trace is below 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination thresh-
old, so each spike is equal the threshold at both ends. Default is True.

• normalize (bool, optional) – If the voltage traceshould be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold
must have a absolute value between [0, 1]. Default is False.

• min_amplitude ({int, float}, optional) – Minimum height for what should be considered
a spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered
a spike. Default is 0.

Raises

• ValueError – If the threshold is outside the interval [0, 1] when normalize=True.

• ValueError – If the absolute value of end_threshold is outside the interval [0, 1] when
normalize=True.

Notes

The spikes are added to self.spikes and self.nr_spikes is updated.

The spikes are found by finding where the voltage trace goes above the threshold, and then later falls below
this threshold + end_threshold. The spike is considered to be everything within this interval.

The spike can be extended. If extended_spikes is True, the spike is extended around the above area until
the derivative of the voltage trace falls below 0.5. This works badly with noisy voltage traces.

plot_spikes(save_name=None)
Plot all spikes.

Parameters save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead
of saved to disk. Default is None.
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plot_voltage(save_name)
Plot the voltage with the peak of each spike marked.

Parameters save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead
of saved to disk. Default is None.

Spike

class uncertainpy.features.Spike(time, V, time_spike, V_spike, global_index, xlabel=u”, yla-
bel=u”)

A single spike found in a voltage trace.

Parameters

• time (array_like) – The time array of the spike.

• V (array_like) – The voltage array of the spike.

• time_spike ({float, int}) – The timing of the peak of the spike.

• V_spike ({float, int}) – The voltage at the peak of the spike.

• global_index (int) – Index of the spike peak in the simulation.

• xlabel (str, optional) – Label for the x-axis.

• ylabel (str, optional) – Label for the y-axis.

Variables

• time (array_like) – The time array of the spike.

• V (array_like) – The voltage array of the spike.

• time_spike ({float, int}) – The timing of the peak of the spike.

• V_spike ({float, int}) – The voltage at the peak of the spike.

• global_index (int) – Index of the spike peak in the simulation.

• xlabel (str, optional) – Label for the x-axis.

• ylabel (str, optional) – Label for the y-axis.

plot(save_name=None)
Plot the spike.

Parameters save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead
of saved to disk. Default is None.

trim(threshold, min_extent_from_peak=1)
Remove the first and last values of the spike that is below threshold.

Parameters

• threshold ({float, int}) – Remove all values from each side of the spike that is bellow this
value.

• min_extent_from_peak (int, optional) – Minimum extent of the spike in each direction
from the peak.
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8.4 EfelFeatures

An extensive set of features for single neuron voltage traces is found in the Electrophys Feature Extraction Library
(eFEL). Uncertainpy has all features in the eFEL library contained in the EfelFeatures class. As with Spik-
ingFeatures, many of the eFEL features require the start time and end time of the stimulus, which must be returned
as info["stimulus_start"] and info["stimulus_start"] in the model function. eFEL currently con-
tains 153 different features, we briefly list them here, but refer to the eFEL documentation for the definitions of each
feature.

AHP1_depth_from_peak AHP2_depth_from_peak AHP_depth
AHP_depth_abs AHP_depth_abs_slow AHP_depth_diff
AHP_depth_from_peak AHP_slow_time AHP_time_from_peak
AP1_amp AP1_begin_voltage AP1_begin_width
AP1_peak AP1_width AP2_AP1_begin_width_diff
AP2_AP1_diff AP2_AP1_peak_diff AP2_amp
AP2_begin_voltage AP2_begin_width AP2_peak
AP2_width AP_amplitude AP_amplitude_change
AP_amplitude_diff AP_amplitude_from_voltagebase AP_begin_indices
AP_begin_time AP_begin_voltage AP_begin_width
AP_duration AP_duration_change AP_duration_half_width
AP_duration_half_width_change AP_end_indices AP_fall_indices
AP_fall_rate AP_fall_rate_change AP_fall_time
AP_height AP_phaseslope AP_phaseslope_AIS
AP_rise_indices AP_rise_rate AP_rise_rate_change
AP_rise_time AP_width APlast_amp
BAC_maximum_voltage BAC_width BPAPAmplitudeLoc1
BPAPAmplitudeLoc2 BPAPHeightLoc1 BPAPHeightLoc2
BPAPatt2 BPAPatt3 E10
E11 E12 E13
E14 E15 E16
E17 E18 E19
E2 E20 E21
E22 E23 E24
E25 E26 E27
E3 E39 E39_cod
E4 E40 E5
E6 E7 E8
E9 ISI_CV ISI_log_slope
ISI_log_slope_skip ISI_semilog_slope ISI_values
Spikecount Spikecount_stimint adaptation_index
adaptation_index2 all_ISI_values amp_drop_first_last
amp_drop_first_second amp_drop_second_last burst_ISI_indices
burst_mean_freq burst_number check_AISInitiation
decay_time_constant_after_stim depolarized_base doublet_ISI
fast_AHP fast_AHP_change interburst_voltage
inv_fifth_ISI inv_first_ISI inv_fourth_ISI
inv_last_ISI inv_second_ISI inv_third_ISI
inv_time_to_first_spike irregularity_index is_not_stuck
max_amp_difference maximum_voltage maximum_voltage_from_voltagebase
mean_AP_amplitude mean_frequency min_AHP_indices
min_AHP_values min_voltage_between_spikes minimum_voltage

Continued on next page
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Table 1 – continued from previous page
number_initial_spikes ohmic_input_resistance ohmic_input_resistance_vb_ssse
peak_indices peak_time peak_voltage
sag_amplitude sag_ratio1 sag_ratio2
single_burst_ratio spike_half_width spike_width2
steady_state_hyper steady_state_voltage steady_state_voltage_stimend
time_constant time_to_first_spike time_to_last_spike
time_to_second_spike trace_check voltage
voltage_after_stim voltage_base voltage_deflection

8.4.1 API Reference

class uncertainpy.features.EfelFeatures(new_features=None, features_to_run=u’all’,
interpolate=None, labels={}, strict=True, log-
ger_level=u’info’)

Calculating the mean value of each feature in the Electrophys Feature Extraction Library (eFEL), see: https:
//github.com/BlueBrain/eFEL.

Parameters

• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.

• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods
in this class that is not in the list of utility methods, is considered to be a feature. Default is
None.

• interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregu-
lar, meaning they have a varying number of points between two evaluations. An interpola-
tion is performed on each interpolate feature to create regular results. If "all", all features
interpolated. If None, or an empty list, no features are interpolated. If str, only that feature
is interpolated. If list of feature names, all listed features are interpolated. Default is None.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• strict (bool, optional) – If True, missing "stimulus_start" and "stimulus_end"
from info raises a ValueError. If False the simulation start time is used as
"stimulus_start" and the simulation end time is used for "stimulus_end". The
decay_time_constant_after_stim feature becomes disabled with False. Default is True

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.
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Variables

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features to be interpolated.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

• strict (bool) – If missing info values should raise an error.

Raises

• ValueError – If strict is True and "stimulus_start" and "stimulus_end" are
missing from info.

• ValueError – If stimulus_start >= stimulus_end.

• ImportError – If Efel is not installed.

Notes

Efel features take the parameters (time, values, info) and require info[“stimulus_start”] and
info[“stimulus_end”] to be set.

Implemented Efel features are:

AHP1_depth_from_peak AHP2_depth_from_peak AHP_depth
AHP_depth_abs AHP_depth_abs_slow AHP_depth_diff
AHP_depth_from_peak AHP_slow_time AHP_time_from_peak
AP1_amp AP1_begin_voltage AP1_begin_width
AP1_peak AP1_width AP2_AP1_begin_width_diff
AP2_AP1_diff AP2_AP1_peak_diff AP2_amp
AP2_begin_voltage AP2_begin_width AP2_peak
AP2_width AP_amplitude AP_amplitude_change
AP_amplitude_diff AP_amplitude_from_voltagebase AP_begin_indices
AP_begin_time AP_begin_voltage AP_begin_width
AP_duration AP_duration_change AP_duration_half_width
AP_duration_half_width_change AP_end_indices AP_fall_indices
AP_fall_rate AP_fall_rate_change AP_fall_time
AP_height AP_phaseslope AP_phaseslope_AIS
AP_rise_indices AP_rise_rate AP_rise_rate_change
AP_rise_time AP_width APlast_amp
APlast_width BAC_maximum_voltage BAC_width
BPAPAmplitudeLoc1 BPAPAmplitudeLoc2 BPAPHeightLoc1
BPAPHeightLoc2 BPAPatt2 BPAPatt3
E10 E11 E12
E13 E14 E15
E16 E17 E18
E19 E2 E20
E21 E22 E23
E24 E25 E26
E27 E3 E39
E39_cod E4 E40

Continued on next page
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Table 2 – continued from previous page
E5 E6 E7
E8 E9 ISI_CV
ISI_log_slope ISI_log_slope_skip ISI_semilog_slope
ISI_values ISIs Spikecount
Spikecount_stimint adaptation_index adaptation_index2
all_ISI_values amp_drop_first_last amp_drop_first_second
amp_drop_second_last burst_ISI_indices burst_mean_freq
burst_number check_AISInitiation decay_time_constant_after_stim
depolarized_base doublet_ISI fast_AHP
fast_AHP_change initburst_sahp initburst_sahp_ssse
initburst_sahp_vb interburst_voltage inv_fifth_ISI
inv_first_ISI inv_fourth_ISI inv_last_ISI
inv_second_ISI inv_third_ISI inv_time_to_first_spike
irregularity_index is_not_stuck max_amp_difference
maximum_voltage maximum_voltage_from_voltagebase mean_AP_amplitude
mean_frequency min_AHP_indices min_AHP_values
min_voltage_between_spikes minimum_voltage number_initial_spikes
ohmic_input_resistance ohmic_input_resistance_vb_ssse peak_indices
peak_time peak_voltage sag_amplitude
sag_ratio1 sag_ratio2 single_burst_ratio
spike_half_width spike_width2 steady_state_hyper
steady_state_voltage steady_state_voltage_stimend time
time time_constant time_to_first_spike
time_to_last_spike time_to_second_spike trace_check
voltage voltage voltage_after_stim
voltage_base voltage_deflection voltage_deflection_begin
voltage_deflection_vb_ssse

See also:

uncertainpy.features.EfelFeatures.reference_feature reference_feature showing the re-
quirements of a Efel feature function.

add_features(new_features, labels={})
Add new features.

Parameters

• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.
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Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.

Parameters

• feature_name (str) – Name of feature to calculate.

• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method
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calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list

implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.

Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.
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Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

preprocess
Preprossesing of the time time and results values from the model, before the features are calculated.

No preprocessing is performed, and the direct model results are currently returned. If preprocessing is
needed it should follow the below format.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns Returns any number of values that are sent to each feature. The values returned must
compatible with the input arguments of all features.

Return type preprocess_results

Notes

Perform a preprossesing of the model results before the results are sent to the calculation of each feature.
It is used to perform common calculations that each feature needs to perform, to reduce the number of
necessary calculations. The values returned must therefore be compatible with the input arguments to each
features.

See also:

uncertainpy.models.Model.run The model run method

reference_feature(time, values, info)
An example of an Efel feature. Efel feature functions have the following requirements, and the given
parameters must either be returned by model.run or features.preprocess.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• values (array_like) – Result of the model.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”] set.

Returns

• time (None) – No mean Efel feature has time values, so None is returned instead.

• values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.

See also:

uncertainpy.features.Features.preprocess() The features preprocess method.

uncertainpy.models.Model.run() The model run method
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validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.

• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.

8.5 NetworkFeatures

NetworkFeatures contains a set of features relevant for the output of network models and are calculated using the
Elephant software. This set of features require that the model returns the simulation end time and a list of spiketrains,
which are the times a given neuron spikes. The implemented features are:

1. average_firing_rate – Mean firing rate (for a single recorded neuron).

2. instantaneous_rate – Instantaneous firing rate (averaged over all recorded neurons within a small time
window).

3. mean_isi – Average interspike interval (averaged over all recorded neurons).

4. cv – Coefficient of variation of the interspike interval (for a single recorded neuron).

5. average_cv – average coefficient of variation of the interspike interval (averaged over all recorded neurons).

6. local_variation – Local variation (variability of interspike intervals for a single recorded neuron).

7. average_local_variation – Mean local variation (variability of interspike intervals averaged over all
recorded neurons).

8. fanofactor – Fanofactor (variability of spiketrains).

9. victor_purpura_dist – Victor purpura distance (spiketrain dissimilarity between two recorded neurons).

10. van_rossum_dist – Van rossum distance (spiketrain dissimilarity between two recorded neurons).

11. binned_isi – Histogram of the interspike intervals (for all recorded neurons).

12. corrcoef – Pairwise Pearson’s correlation coefficients (between the spiketrains of two recorded neurons).

13. covariance – Covariance (between the spiketrains of two recorded neurons).

102 Chapter 8. Features

http://neuralensemble.org/elephant/


Uncertainpy Documentation, Release 1.2.3

The use of the NetworkFeatures class in Uncertainpy follows the same logic as the use of the other feature
classes, and custom features can easily be included. As with SpikingFeatures, NetworkFeatures implements a
preprocess() method. This preprocess returns the following objects:

1. End time of the simulation (end_time).

2. A list of NEO spiketrains (spiketrains).

Each feature function therefore require the same objects as input arguments. Note that a info object is not used.

8.5.1 API Reference

class uncertainpy.features.NetworkFeatures(new_features=None, features_to_run=u’all’,
interpolate=None, labels={}, units=None,
instantaneous_rate_nr_samples=50,
isi_bin_size=1, corrcoef_bin_size=1, co-
variance_bin_size=1, logger_level=u’info’)

Network features of a model result, works with all models that return the simulation end time, and a list of
spiketrains.

Parameters

• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.

• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregu-
lar, meaning they have a varying number of time points between evaluations. An interpola-
tion is performed on each irregular feature to create regular results. If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• units ({None, Quantities unit}, optional) – The Quantities unit of the time in the model. If
None, ms is used. The default is None.

• instantaneous_rate_nr_samples (int) – The number of samples used to calculate the in-
stantaneous rate. Default is 50.

• isi_bin_size (int) – The size of each bin in the binned_isi method. Default is 1.

• corrcoef_bin_size (int) – The size of each bin in the corrcoef method. Default is 1.

• covariance_bin_size (int) – The size of each bin in the covariance method. Default is
1.
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• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features to be interpolated.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

• logger (logging.Logger) – Logger object responsible for logging to screen or file.

• instantaneous_rate_nr_samples (int) – The number of samples used to calcu-
late the instantaneous rate. Default is 50.

• isi_bin_size (int) – The size of each bin in the binned_isi method. Default is 1.

• corrcoef_bin_size (int) – The size of each bin in the corrcoef method. Default
is 1.

• covariance_bin_size (int) – The size of each bin in the covariance method.
Default is 1.

Notes

Implemented features are:

cv average_cv average_isi,
local_variation mean local_variation average_firing_rate
instantaneous_rate fanofactor van_rossum_dist
victor_purpura_dist binned_isi corrcoef
covariance

All features in this set of features take the following input arguments:

simulation_end [float] The simulation end time

neo_spiketrains [list] A list of Neo spiketrains.

The model must return:

simulation_end [float] The simulation end time

spiketrains [list] A list of spiketrains, each spiketrain is a list of the times when a given neuron spikes.

Raises ImportError – If elephant or quantities is not installed.

See also:

uncertainpy.features.Features.reference_feature reference_feature showing the require-
ments of a feature function.

add_features(new_features, labels={})
Add new features.

Parameters
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• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.

Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

average_cv(simulation_end, spiketrains)
Calculate the average coefficient of variation.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• values (float) – The average coefficient of variation of each spiketrain.

average_firing_rate(simulation_end, spiketrains)
Calculate the mean firing rate.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• average_firing_rate (float) – The mean firing rate of all neurons.

average_isi(simulation_end, spiketrains)
Calculate the average interspike interval (isi) variation for each neuron.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

8.5. NetworkFeatures 105



Uncertainpy Documentation, Release 1.2.3

• time (None)

• average_isi (float) – The average interspike interval.

average_local_variation(simulation_end, spiketrains)
Calculate the average of the local variation.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• average_local_variation (float) – The average of the local variation for each spiketrain.

binned_isi(simulation_end, spiketrains)
Calculate a histogram of the interspike interval.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (array) – The center of each bin.

• binned_isi (array) – The binned interspike intervals.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.

Parameters

• feature_name (str) – Name of feature to calculate.
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• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method

calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

corrcoef(simulation_end, spiketrains)
Calculate the pairwise Pearson’s correlation coefficients.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• values (2D array) – The pairwise Pearson’s correlation coefficients.

covariance(simulation_end, spiketrains)
Calculate the pairwise covariances.

Parameters
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• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• values (2D array) – The pairwise covariances.

cv(simulation_end, spiketrains)
Calculate the coefficient of variation for each neuron.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• values (array) – The coefficient of variation for each spiketrain.

fanofactor(simulation_end, spiketrains)
Calculate the fanofactor.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• fanofactor (float) – The fanofactor.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list

implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

instantaneous_rate(simulation_end, spiketrains)
Calculate the mean instantaneous firing rate.

Parameters

• simulation_end (float) – The simulation end time.
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• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (array) – Time of the instantaneous firing rate.

• instantaneous_rate (float) – The instantaneous firing rate.

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.

Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.

Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

local_variation(simulation_end, spiketrains)
Calculate the measure of local variation.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• local_variation (list) – The local variation for each spiketrain.

preprocess(simulation_end, spiketrains)
Preprossesing of the simulation end time simulation_end and spiketrains spiketrains from the model, be-
fore the features are calculated.

Parameters

• simulation_end (float) – The simulation end time

• spiketrains (list) – A list of spiketrains, each spiketrain is a list of the times when a given
neuron spikes.

Returns

• simulation_end (float) – The simulation end time

• neo_spiketrains (list) – A list of Neo spiketrains.
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Raises ValueError – If simulation_end is np.nan or None.

Notes

This preprocessing makes it so all features get the input simulation_end and spiketrains.

See also:

uncertainpy.models.Model.run() The model run method

reference_feature(simulation_end, neo_spiketrains)
An example of an GeneralNetworkFeature. The feature functions have the following requirements, and
the given parameters must either be returned by model.run or features.preprocess.

Parameters

• simulation_end (float) – The simulation end time

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values return None or numpy.nan.

• values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.

See also:

uncertainpy.features.GeneralSpikingFeatures.preprocess() The GeneralSpik-
ingFeatures preprocess method.

uncertainpy.models.Model.run() The model run method

validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.
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• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.

van_rossum_dist(simulation_end, spiketrains)
Calculate van Rossum distance.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• van_rossum_dist (2D array) – The van Rossum distance.

victor_purpura_dist(simulation_end, spiketrains)
Calculate the Victor-Purpura’s distance.

Parameters

• simulation_end (float) – The simulation end time.

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time (None)

• values (2D array) – The Victor-Purpura’s distance.

8.6 GeneralNetworkFeatures

GeneralNetworkFeatures implements the preprocessing of spiketrains, and create NEO spiketrains, but does
not implement any features in itself. This set of features require that the model returns the simulation end time and a
list of spiketrains, which are the times a given neuron spikes. The preprocess() method changes the input given
to the feature functions, and as such each network feature function has the following input arguments:

1. End time of the simulation (end_time).

2. A list of NEO spiketrains (spiketrains).

8.6.1 API Reference

class uncertainpy.features.GeneralNetworkFeatures(new_features=None, fea-
tures_to_run=u’all’, interpo-
late=None, labels={}, units=None,
logger_level=u’info’)

Class for creating NEO spiketrains from a list of spiketrains, for network models. The model must return the
simulation end time and a list of spiketrains.

Parameters

• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.
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• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods in this class that is not in
the list of utility methods, is considered to be a feature. Default is None.

interpolate [{None, “all”, str, list of feature names}, optional] Which features are irregular,
meaning they have a varying number of time points between evaluations. An interpolation
is performed on each irregular feature to create regular results. If "all", all features are
interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default
is None.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• units ({None, Quantities unit}, optional) – The Quantities unit of the time in the model. If
None, ms is used. The default is None.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

Notes

All features in this set of features take the following input arguments:

simulation_end [float] The simulation end time

neo_spiketrains [list] A list of Neo spiketrains.

The model must return:

simulation_end [float] The simulation end time

spiketrains [list] A list of spiketrains, each spiketrain is a list of the times when a given neuron spikes.

Raises ImportError – If neo or quantities is not installed.

See also:
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GeneralNetworkFeatures.preprocess

GeneralNetworkFeatures.reference_feature reference_feature showing the requirements of a
feature function.

add_features(new_features, labels={})
Add new features.

Parameters

• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.

Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.
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Parameters

• feature_name (str) – Name of feature to calculate.

• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method

calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list
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implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.

Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.

Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

preprocess(simulation_end, spiketrains)
Preprossesing of the simulation end time simulation_end and spiketrains spiketrains from the model, be-
fore the features are calculated.

Parameters

• simulation_end (float) – The simulation end time

• spiketrains (list) – A list of spiketrains, each spiketrain is a list of the times when a given
neuron spikes.

Returns

• simulation_end (float) – The simulation end time

• neo_spiketrains (list) – A list of Neo spiketrains.

Raises ValueError – If simulation_end is np.nan or None.

Notes

This preprocessing makes it so all features get the input simulation_end and spiketrains.

See also:

uncertainpy.models.Model.run() The model run method
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reference_feature(simulation_end, neo_spiketrains)
An example of an GeneralNetworkFeature. The feature functions have the following requirements, and
the given parameters must either be returned by model.run or features.preprocess.

Parameters

• simulation_end (float) – The simulation end time

• neo_spiketrains (list) – A list of Neo spiketrains.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values return None or numpy.nan.

• values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.

See also:

uncertainpy.features.GeneralSpikingFeatures.preprocess() The GeneralSpik-
ingFeatures preprocess method.

uncertainpy.models.Model.run() The model run method

validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.

• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.

8.7 GeneralSpikingFeatures

GeneralSpikingFeatures implements the preprocessing of voltage traces, and locate spikes in the voltage
traces, but does not implement any features in itself. The preprocess() method changes the input given to the
feature functions, and as such each spiking feature function has the following input arguments:
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1. The time array returned by the model simulation.

2. An Spikes object (spikes) which contain the spikes found in the model output.

3. An info dictionary with info["stimulus_start"] and info["stimulus_end"] set.

8.7.1 API Reference

class uncertainpy.features.GeneralSpikingFeatures(new_features=None, fea-
tures_to_run=u’all’, inter-
polate=None, threshold=-
30, end_threshold=-10,
extended_spikes=False,
trim=True, normal-
ize=False, min_amplitude=0,
min_duration=0, labels={}, log-
ger_level=u’info’)

Class for calculating spikes of a model, works with single neuron models and voltage traces.

Parameters

• new_features ({None, callable, list of callables}) – The new features to add. The feature
functions have the requirements stated in reference_feature. If None, no features are
added. Default is None.

• features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to
calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list [], no features are calculated. If str,
only that feature is calculated. If list of feature names, all the listed features are calculated.
Default is "all".

• new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods
in this class that is not in the list of utility methods, is considered to be a feature. Default is
None.

• interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregu-
lar, meaning they have a varying number of time points between evaluations. An interpola-
tion is performed on each irregular feature to create regular results. If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.

• threshold ({float, int, “auto”}, optional) – The threshold where the model result is consid-
ered to have a spike. If “auto” the threshold is set to the standard variation of the result.
Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Generally negative values give the best results. Default is -10.

• extended_spikes (bool, optional) – If the found spikes should be extended further out than
the threshold cuttoff. If True the spikes is considered to start and end where the derivative
equals 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.

• normalize (bool, optional) – If the voltage traceshould be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold a
similar relative value. Default is False.
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• min_amplitude ({int, float}, optional) – Minimum height for what should be considered a
spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered a
spike. Default is 0.

• labels (dictionary, optional) – A dictionary with key as the feature name and the value as a
list of labels for each axis. The number of elements in the list corresponds to the dimension
of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• spikes (Spikes object) – A Spikes object that contain all spikes.

• threshold ({float, int, "auto"}, optional) – The threshold where the
model result is considered to have a spike. If “auto” the threshold is set to the standard
variation of the result. Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike rel-
ative to the threshold. Default is -10.

• extended_spikes (bool) – If the found spikes should be extended further out than the
threshold cuttoff.

• trim (bool) – If the spikes should be trimmed back from the termination threshold, so
each spike is equal the threshold at both ends.

• normalize (bool) – If the voltage traceshould be normalized before the spikes are found.
If normalize is used threshold must be between [0, 1], and the end_threshold a similar
relative value.

• min_amplitude ({int, float}, optional) – Minimum height for what should
be considered a spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should
be considered a spike. Default is 0.

• features_to_run (list) – Which features to calculate uncertainties for.

• interpolate (list) – A list of irregular features to be interpolated.

• utility_methods (list) – A list of all utility methods implemented. All methods in
this class that is not in the list of utility methods is considered to be a feature.

• labels (dictionary) – Labels for the axes of each feature, used when plotting.

See also:

uncertainpy.features.Features.reference_feature reference_feature showing the require-
ments of a feature function.

uncertainpy.features.Spikes Class for finding spikes in the model result.
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add_features(new_features, labels={})
Add new features.

Parameters

• new_features ({callable, list of callables}) – The new features to add. The feature func-
tions have the requirements stated in reference_feature.

• labels (dictionary, optional) – A dictionary with the labels for the new features. The keys
are the feature function names and the values are a list of labels for each axis. The number
of elements in the list corresponds to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]

}

Raises TypeError – Raises a TypeError if new_features is not callable or list of callables.

Notes

The features added are not added to features_to_run. features_to_run must be set manually
afterwards.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

calculate_all_features(*model_results)
Calculate all implemented features.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dictio-
nary with the time values time and feature results on values, on the form {"time": t,
"values": U}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_feature(feature_name, *preprocess_results)
Calculate feature with feature_name.

Parameters

• feature_name (str) – Name of feature to calculate.
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• *preprocess_results – The values returned by preprocess. These values are sent as
input arguments to each feature. By default preprocess returns the values that model.
run() returns, which contains time and values, and then any number of optional info
values. The implemented features require that info is a single dictionary with the informa-
tion stored as key-value pairs. Certain features require specific keys to be present.

Returns

• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values returns None or numpy.nan.

• values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be interpolated.

Raises TypeError – If feature_name is a utility method.

See also:

uncertainpy.models.Model.run() The model run method

calculate_features(*model_results)
Calculate all features in features_to_run.

Parameters *model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of optional info values.

Returns results – A dictionary where the keys are the feature names and the values are a dic-
tionary with the time values time and feature results on values, on the form {"time":
time, "values": values}.

Return type dictionary

Raises TypeError – If feature_name is a utility method.

Notes

Checks that the feature returns two values.

See also:

uncertainpy.features.Features.calculate_feature() Method for calculating a single
feature.

calculate_spikes(time, values, threshold=-30, end_threshold=-10, extended_spikes=False,
trim=True, normalize=False, min_amplitude=0, min_duration=0)

Calculating spikes of a model result, works with single neuron models and voltage traces.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• values (array_like) – Result of the model.

• threshold ({float, int, “auto”}, optional) – The threshold where the model result is con-
sidered to have a spike. If “auto” the threshold is set to the standard variation of the result.
Default is -30.

• end_threshold ({int, float}, optional) – The end threshold for a spike relative to the thresh-
old. Default is -10.
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• extended_spikes (bool, optional) – If the found spikes should be extended further out than
the threshold cuttoff. If True the spikes is considered to start and end where the derivative
equals 0.5. Default is False.

• trim (bool, optional) – If the spikes should be trimmed back from the termination thresh-
old, so each spike is equal the threshold at both ends. Default is True.

• normalize (bool, optional) – If the voltage traceshould be normalized before the spikes
are found. If normalize is used threshold must be between [0, 1], and the end_threshold a
similar relative value. Default is False.

• min_amplitude ({int, float}, optional) – Minimum height for what should be considered
a spike. Default is 0.

• min_duration ({int, float}, optional) – Minimum duration for what should be considered
a spike. Default is 0.

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it
returns None or numpy.nan.

• values (Spikes) – The spikes found in the model results.

See also:

uncertainpy.features.Features.reference_feature() reference_feature showing the
requirements of a feature function.

uncertainpy.features.Spikes() Class for finding spikes in the model result.

features_to_run
Which features to calculate uncertainties for.

Parameters new_features_to_run ({“all”, None, str, list of feature names}) – Which features
to calculate uncertainties for. If "all", the uncertainties are calculated for all implemented
and assigned features. If None, or an empty list , no features are calculated. If str, only that
feature is calculated. If list of feature names, all listed features are calculated. Default is
"all".

Returns A list of features to calculate uncertainties for.

Return type list

implemented_features()
Return a list of all callable methods in feature, that are not utility methods, does not starts with “_” and not
a method of a general python object.

Returns A list of all callable methods in feature, that are not utility methods.

Return type list

interpolate
Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of time points between evaluations.
An interpolation is performed on each interpolated feature to create regular results.

Parameters new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features
are interpolated. If None, or an empty list, no features are interpolated. If str, only that
feature is interpolated. If list of feature names, all listed features are interpolated. Default is
None.
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Returns A list of irregular features to be interpolated.

Return type list

labels
Labels for the axes of each feature, used when plotting.

Parameters new_labels (dictionary) – A dictionary with key as the feature name and the value
as a list of labels for each axis. The number of elements in the list corresponds to the dimen-
sion of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
"1d_feature": ["x-axis", "y-axis"],
"2d_feature": ["x-axis", "y-axis", "z-axis"]
}

preprocess(time, values, info)
Calculating spikes from the model result.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• values (array_like) – Result of the model.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].

Returns

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it
returns None or numpy.nan.

• values (Spikes) – The spikes found in the model results.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].

Notes

Also sets self.values = values, so features have access to self.values if necessary.

See also:

uncertainpy.models.Model.run() The model run method

uncertainpy.features.Spikes() Class for finding spikes in the model result.

reference_feature(time, spikes, info)
An example of an GeneralSpikingFeature. The feature functions have the following requirements, and the
input arguments must either be returned by Model.run or SpikingFeatures.preprocess.

Parameters

• time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is
None or numpy.nan.

• spikes (Spikes) – Spikes found in the model result.

• info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”] set.

Returns
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• time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no
time values return None or numpy.nan.

• values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.

See also:

uncertainpy.features.GeneralSpikingFeatures.preprocess() The GeneralSpik-
ingFeatures preprocess method.

uncertainpy.models.Model.run() The model run method

validate(feature_name, *feature_result)
Validate the results from calculate_feature.

This method ensures each returns time, values.

Parameters

• model_results – Any type of model results returned by run.

• feature_name (str) – Name of the feature, to create better error messages.

Raises

• ValueError – If the model result does not fit the requirements.

• TypeError – If the model result does not fit the requirements.

Notes

Tries to verify that at least, time and values are returned from run. model_result should follow the
format: return time, values, info_1, info_2, .... Where:

• time_feature [{None, numpy.nan, array_like}] Time values, or equivalent, of the
feature, if no time values return None or numpy.nan.

• values [{None, numpy.nan, array_like}] The feature results, values must either be reg-
ular (have the same number of points for different paramaters) or be able to be interpolated. If
there are no feature results return None or numpy.nan instead of values and that evaluation are
disregarded.
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CHAPTER 9

Data

Uncertainpy stores all results from the uncertainty quantification and sensitivity analysis in
UncertaintyQuantification.data, as a Data object. The Data class works similarly to a Python
dictionary. The name of the model or feature is the key, while the values are DataFeature objects that stores
each statistical metric in in the table below as attributes. Results can be saved and loaded through Data.save and
Data.load.

Calculated statistical metric Symbol Variable
Model and feature evaluations 𝑈 evaluations
Model and feature times 𝑡 time
Mean E mean
Variance V variance
5th percentile 𝑃5 percentile_5
95th percentile 𝑃95 percentile_95
First order Sobol indices 𝑆 sobol_first
Total order Sobol indices 𝑆𝑇 sobol_total

Average of the first order Sobol indices ̂︀𝑆 sobol_first_average

Average of the total order Sobol indices ̂︀𝑆𝑇 sobol_total_average

An example: if we have performed uncertainty quantification of a spiking neuron model with the number of spikes as
one of the features, we get load the data file and get the variance of the number of spikes by typing:

data = un.Data()
data.load("filename")
variance = data["nr_spikes"].variance
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9.1 API reference

9.1.1 Data

class uncertainpy.Data(filename=None, backend=u’auto’, logger_level=u’info’)
Store the results of each statistical metric calculated from the uncertainty quantification and sensitivity analysis
for each model/features.

Has all standard dictionary methods, such as items, value, contains and so implemented. Can be indexed as a
regular dictionary with model/feature names as keys and returns a DataFeature object that contains the data for
all statistical metrics for that model/feature. Additionally it contains information on how the calculations was
performed

Parameters

• filename (str, optional) – Name of the file to load data from. If None, no data is loaded.
Default is None.

• backend ({“auto”, “hdf5”, “exdir”}, optional) – The fileformat used to save and load data
to/from file. “auto” assumes the filenamess ends with either “.h5” for HDF5 files or “.exdir”
for Exdir files. If unknown fileextension defaults to saving as HDF5 files. “hdf5” saves and
loads files from HDF5 files. “exdir” saves and loads files from Exdir files. Default is “auto”.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed Default logger level is “info”.

Variables

• uncertain_parameters (list) – A list of the uncertain parameters in the uncertainty
quantification.

• model_name (str) – Name of the model.

• incomplete (list) – List of all model/features that have missing model/feature evalua-
tions.

• error (list) – List of all model/features that were irregular, but not set to be interpolated.

• method (str) – A string that describes the method used to perform the uncertainty quan-
tification.

• data (dictionary) – A dictionary with a DataFeature for each model/feature.

• data_information (list) – List of attributes containing additional information.

Notes

The statistical metrics calculated for each feature and model in Uncertainpy are:

• evaluations - the results from the model/feature evaluations.

• time - the time of the model/feature.

• mean - the mean of the model/feature.

• variance. - the variance of the model/feature.

• percentile_5 - the 5th percentile of the model/feature.

• percentile_95 - the 95th percentile of the model/feature.

126 Chapter 9. Data



Uncertainpy Documentation, Release 1.2.3

• sobol_first - the first order Sobol indices (sensitivity) of the model/feature.

• sobol_first_average - the average of the first order Sobol indices (sensitivity) of the model/feature.

• sobol_total - the total order Sobol indices (sensitivity) of the model/feature.

• sobol_total_average - the average of the total order Sobol indices (sensitivity) of the model/feature.

Raises ValueError – If unsupported backend is chosen.

See also:

uncertainpy.DataFeature

__delitem__(feature)
Delete data for feature.

Parameters feature (str) – Name of feature.

__getitem__(feature)
Get the DataFeature containing the data for feature.

Parameters feature (str) – Name of feature/model.

Returns The DataFeature containing the data for feature.

Return type DataFeature

__iter__()
Iterate over each feature/model that has not errored.

Yields str – Name of feature/model.

__len__()
Get the number of model/features that have not errored.

Returns The number of model/features that have not errored.

Return type int

__setitem__(feature, data)
Set data for feature. Data must be a DataFeature object.

Parameters

• feature (str) – Name of feature/model.

• data (DataFeature) – DataFeature with the data for feature.

Raises ValueError – If data is not a DataFeature.

__str__()
Convert all data to a readable string.

Returns A human readable string of all stored data.

Return type str

add_features(features)
Add features (which contain no data).

Parameters features ({str, list}) – Name of feature to add, or list of features to add.

clear()
Clear all data.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

9.1. API reference 127



Uncertainpy Documentation, Release 1.2.3

get_labels(feature)
Get labels for a feature. If no labels are defined, returns a list with the correct number of empty strings.

Parameters feature (str) – Name of the model or a feature.

Returns A list of labels for plotting, [x-axis, y-axis, z-axis]. If no labels are de-
fined (labels = []), returns a list with the correct number of empty strings.

Return type list

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

load(filename)
Load data from a HDF5 or Exdir file with name filename.

Parameters filename (str) – Name of the file to load data from.

Raises

• ImportError – If h5py is not installed.

• ImportError – If Exdir is not installed.

ndim(feature)
Get the number of dimensions of a feature.

Parameters feature (str) – Name of the model or a feature.

Returns The number of dimensions of the model/feature result. Returns None if the feature has
no evaluations or only contains nan.

Return type int, None

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

remove_only_invalid_features()
Remove all features that only have invalid results (NaN).

save(filename)
Save data to a HDF5 or Exdir file with name filename.

Parameters filename (str) – Name of the file to load data from.

Raises

• ImportError – If h5py is not installed.

• ImportError – If Exdir is not installed.

seed
Seed used in the calculations.

Parameters new_seed ({None, int}) – Seed used in the calculations. If None, converted to “”.

Returns seed – Seed used in the calculations.
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Return type {int, str}

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E ], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ list of D’s values

9.1.2 DataFeature

class uncertainpy.DataFeature(name, evaluations=None, time=None, mean=None, vari-
ance=None, percentile_5=None, percentile_95=None,
sobol_first=None, sobol_first_average=None, sobol_total=None,
sobol_total_average=None, labels=[])

Store the results of each statistical metric calculated from the uncertainty quantification and sensitivity analysis
for a single model/feature.

The statistical metrics can be retrieved as attributes. Additionally, DataFeature implements all standard dictio-
nary methods, such as items, value, contains and so implemented. This means it can be indexed as a regular
dictionary with the statistical metric names as keys and returns the values for that statistical metric.

Parameters

• name (str) – Name of the model/feature.

• evaluations ({None, array_like}, optional.) – Feature or model result. Default is None.

• time ({None, array_like}, optional.) – Time evaluations for feature or model. Default is
None.

• mean ({None, array_like}, optional.) – Mean of the feature or model results. Default is
None.

• variance ({None, array_like}, optional.) – Variance of the feature or model results. Default
is None.

• percentile_5 ({None, array_like}, optional.) – 5 percentile of the feature or model results.
Default is None.

• percentile_95 ({None, array_like}, optional.) – 95 percentile of the feature or model results.
Default is None.

• sobol_first ({None, array_like}, optional.) – First order sensitivity of the feature or model
results. Default is None.

• sobol_first_average ({None, array_like}, optional.) – First order sensitivity of the feature
or model results. Default is None.

• sobol_total ({None, array_like}, optional.) – Total effect sensitivity of the feature or model
results. Default is None.

• sobol_total_average ({None, array_like}, optional.) – Average of the total effect sensitivity
of the feature or model results. Default is None.

• labels (list, optional.) – A list of labels for plotting, [x-axis, y-axis, z-axis]
Default is [].

Variables

• name (str) – Name of the model/feature.
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• evaluations ({None, array_like}) – Feature or model output.

• time ({None, array_like}) – Time values for feature or model.

• mean ({None, array_like}) – Mean of the feature or model results.

• variance ({None, array_like}) – Variance of the feature or model results.

• percentile_5 ({None, array_like}) – 5 percentile of the feature or model re-
sults.

• percentile_95 ({None, array_like}) – 95 percentile of the feature or model re-
sults.

• sobol_first ({None, array_like}) – First order Sobol indices (sensitivity) of the
feature or model results.

• sobol_first_average ({None, array_like}) – Average of the first order Sobol
indices of the feature or model results.

• sobol_total ({None, array_like}) – Total order Sobol indices (sensitivity) of the
feature or model results.

• sobol_total_average ({None, array_like}) – Average of the total order Sobol
indices of the feature or model results.

• labels (list) – A list of labels for plotting, [x-axis, y-axis, z-axis].

Notes

The statistical metrics calculated in Uncertainpy are:

• evaluations - the results from the model/feature evaluations.

• time - the time of the model/feature.

• mean - the mean of the model/feature.

• variance. - the variance of the model/feature.

• percentile_5 - the 5th percentile of the model/feature.

• percentile_95 - the 95th percentile of the model/feature.

• sobol_first - the first order Sobol indices (sensitivity) of the model/feature.

• sobol_first_average - the average of the first order Sobol indices (sensitivity) of the model/feature.

• sobol_total - the total order Sobol indices (sensitivity) of the model/feature.

• sobol_total_average - the average of the total order Sobol indices (sensitivity) of the model/feature.

__delitem__(statistical_metric)
Delete data for statistical_metric (set to None).

Parameters statistical_metric (str) – Name of the statistical metric.

__getitem__(statistical_metric)
Get the data for statistical_metric.

Parameters statistical_metric (str) – Name of the statistical metric.

Returns The data for statistical_metric.

Return type {array_like, None}
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__iter__()
Iterate over each statistical metric with data.

Yields str – Name of the statistical metric.

__len__()
Get the number of data types with data.

Returns The number of data types with data.

Return type int

__setitem__(statistical_metric, data)
Set the data for the statistical metric.

Parameters

• statistical_metric (str) – Name of the statistical metric.

• data ({array_like, None}) – The data for the statistical metric.

clear()→ None. Remove all items from D.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

get_metrics()
Get the names of all statistical metrics that contain data (not None).

Returns List of the names of all statistical metric that contain data.

Return type list

items()→ list of D’s (key, value) pairs, as 2-tuples

iteritems()→ an iterator over the (key, value) items of D

iterkeys()→ an iterator over the keys of D

itervalues()→ an iterator over the values of D

keys()→ list of D’s keys

ndim()
Get the number of dimensions the data of a data type. Returns None if no evaluations or all evaluations
contain numpy.nan.

Parameters feature (str) – Name of the model or a feature.

Returns The number of dimensions of the data of the data type.

Return type int

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E ], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ list of D’s values
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CHAPTER 10

Distribution

Functions (that work as closures) used to set the distribution of a parameter to an interval around their original value
through for example set_all_distributions(). An example:

# Define a parameter list
parameter_list = [["parameter_1", -67],

["parameter_2", 22]]

# Create the parameters
parameters = un.Parameters(parameter_list)

# Set all parameters to have a uniform distribution
# within a 5% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.05))

10.1 API Reference

uncertainpy.uniform(interval)
A closure that creates a function that takes a parameter as input and returns a uniform distribution with interval
around parameter.

Parameters interval (int, float) – The interval of the uniform distribution around parameter.

Returns distribution – A function that takes parameter as input and returns a uniform distribution
with interval around this parameter.

Return type function

Notes

This function ultimately calculates:
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cp.Uniform(parameter - abs(interval/2.*parameter),
parameter + abs(interval/2.*parameter)).

uncertainpy.normal(interval)
A closure that creates a function that takes a parameter as input and returns a Gaussian distribution with standard
deviation interval*parameter around parameter.

Parameters interval (int, float) – The interval of the standard deviation interval*parameter
for the Gaussian distribution.

Returns distribution – A function that takes a parameter as input and returns a Gaussian distribu-
tion standard deviation interval*parameter.

Return type function

Notes

This function ultimately calculates:

cp.Normal(parameter, abs(interval*parameter))
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CHAPTER 11

Plotting

PlotUncertainty creates plot of the data from the uncertainty quantification and sensitivity analysis.
PlotUncertainpy plots the results for all zero and one dimensional statistical metrics, and some of the two dimen-
sional statistical metrics It is intended as a quick way to get an overview of the data, and does not create publication
ready plots. Custom plots of the data can easily be created by retrieving the results from the Data class.

11.1 API Reference

class uncertainpy.plotting.PlotUncertainty(filename=None, folder=u’figures/’, figurefor-
mat=u’.png’, logger_level=u’info’)

Plotting the results from the uncertainty quantification and sensitivity analysis.

Parameters

• filename ({None, str}, optional) – The name of the data file. If given the file is loaded. If
None, no file is loaded. Default is None.

• folder (str, optional) – The folder where to save the plots. Creates a new folder if it does not
exist. Default is “figures/”.

• figureformat (str, optional) – The format to save the plots in. Given as “.xxx”. All formats
supported by Matplotlib are available. Default is “.png”,

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed Default logger level is “info”.

Variables

• folder (str) – The folder where to save the plots.

• figureformat (str, optional) – The format to save the plots in. Given as “.xxx”.
All formats supported by Matplotlib are available.

• data (Data) – A data object that contains the results from the uncertainty quantification.
Contains all model and feature values, as well as all calculated statistical metrics.
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all_evaluations(foldername=u’evaluations’)
Plot all evaluations for all model and features.

Parameters foldername (str, optional) – Name of folder where to save all plots. The folder is
created if it does not exist. Default folder is named “evaluations”.

attribute_feature_1d(feature=None, attribute=u’mean’, attribute_name=u’mean’, hard-
copy=True, show=False, **plot_kwargs)

Plot a 1 dimensional attribute for a specific model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• attribute ({“mean”, “variance”}, optional) – Attribute to plot, either the mean or vari-
ance. Default is “mean”.

• attribute_name (str) – Name of the attribute, used as title and name of the plot. Default
is “mean”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

• ValueError – If the attribute is not a supported attribute, either “mean” or “variance”.

attribute_feature_2d(feature=None, attribute=u’mean’, attribute_name=u’mean’, hard-
copy=True, show=False, **plot_kwargs)

Plot a 2 dimensional attribute for a specific model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• attribute ({“mean”, “variance”}, optional) – Attribute to plot, either the mean or vari-
ance. Default is “mean”.

• attribute_name (str) – Name of the attribute, used as title and name of the plot. Default
is “mean”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 2 dimensional.

• ValueError – If the attribute is not a supported attribute, either “mean” or “variance”.

average_sensitivity(feature, sensitivity=u’first’, hardcopy=True, show=False)
Plot the average of the sensitivity for a specific model/feature.

Parameters
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• feature ({None, str}) – The name of the model/feature. If None, the name of the model is
used. Default is None.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

• ValueError – If feature does not exist.

average_sensitivity_all(sensitivity=u’first’, hardcopy=True, show=False)
Plot the average of the sensitivity for all model/features.

Parameters

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

average_sensitivity_grid(sensitivity=u’first’, hardcopy=True, show=False, **plot_kwargs)
Plot the average of the sensitivity for all model/features in their own plots in the same figure.

Parameters

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

convert_sensitivity(sensitivity)
Convert a sensitivity str to the correct sensitivity attribute, and a full name.

Parameters sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) –
Which Sobol indices to plot. “sobol_first” and “first” is the first order Sobol indices, while
“sobol_total” and “total” are the total order Sobol indices.

Returns
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• sensitivity (str) – Name of the sensitivity attribute. Either sobol_first”, “sobol_total”, or
the unchanged input.

• full_text (str) – Complete name of the sensitivity. Either “”, or “first order Sobol indices”
or “total order Sobol indices”.

evaluations(feature=None, foldername=u”, **plot_kwargs)
Plot all evaluations for a specific model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “featurename_evaluations”.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• NotImplementedError – If the model/feature have more than 2 dimensions.

• AttributeError – If the dimensions of the evaluations is not valid.

evaluations_0d(feature=None, foldername=u”, **plot_kwargs)
Plot all 0D evaluations for a specific model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist.Default folder is named “featurename_evaluations”.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the evaluations are not 0 dimensional.

evaluations_1d(feature=None, foldername=u”, **plot_kwargs)
Plot all 1D evaluations for a specific model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “featurename_evaluations”.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the evaluations are not 1 dimensional.

evaluations_2d(feature=None, foldername=u”, **plot_kwargs)
Plot all 2D evaluations for a specific model/feature.
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Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “featurename_evaluations”.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the evaluations are not 2 dimensional.

feature_0d(feature, sensitivity=u’first’, hardcopy=True, show=False, max_legend_size=5)
Plot all attributes (mean, variance, p_05, p_95 and sensitivity of it exists) for a 0 dimensional
model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) – Which
Sobol indices to plot. “sobol_first” and “first” is the first order Sobol indices, while
“sobol_total” and “total” are the total order Sobol indices. If None, no sensitivity is plot-
ted. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• max_legend_size (int, optional) – The max number of legends in a row. Default is 5.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 0 dimensional.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, “total” or
None.

features_0d(sensitivity=u’first’, hardcopy=True, show=False)
Plot the results for all 0 dimensional model/features.

Parameters

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

features_1d(sensitivity=u’first’)
Plot all data for all 1 dimensional model/features.
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For each model/feature plots mean_1d, variance_1d, mean_variance_1d,
and prediction_interval_1d. If sensitivity also plot sensitivity_1d,
sensitivity_1d_combined, and sensitivity_1d_grid.

Parameters sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) –
Which Sobol indices to plot. “sobol_first” and “first” is the first order Sobol indices, while
“sobol_total” and “total” are the total order Sobol indices. If None, no sensitivity is plotted.
Default is “first”.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, “total” or
None.

See also:

uncertainpy.plotting.PlotUncertainty.mean_1d(), uncertainpy.
plotting.PlotUncertainty.variance_1d(), uncertainpy.plotting.
PlotUncertainty.mean_variance_1d(), uncertainpy.plotting.
PlotUncertainty.prediction_interval_1d(), uncertainpy.plotting.
PlotUncertainty.sensitivity_1d(), uncertainpy.plotting.PlotUncertainty.
sensitivity_1d_combined(), uncertainpy.plotting.PlotUncertainty.
sensitivity_1d_grid()

features_2d()
Plot all implemented plots for all 2 dimensional model/features. For each model/feature plots mean_2d,
and variance_2d.

Raises ValueError – If a Datafile is not loaded.

folder
The folder where to save all plots.

Parameters new_folder (str) – Name of new folder where to save all plots. The folder is created
if it does not exist.

load(filename)
Load data from a HDF5 or Exdir file with name filename.

Parameters filename (str) – Name of the file to load data from.

mean_1d(feature, hardcopy=True, show=False, **plot_kwargs)
Plot the mean for a specific 1 dimensional model/feature.

Parameters

• feature (str) – The name of the model/feature.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.
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mean_2d(feature, hardcopy=True, show=False, **plot_kwargs)
Plot the mean for a specific 2 dimensional model/feature.

Parameters

• feature (str) – The name of the model/feature.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 2 dimensional.

mean_variance_1d(feature=None, new_figure=True, hardcopy=True, show=False, **plot_kwargs)
Plot the mean and variance for a specific 1 dimensional model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

plot(condensed=True, sensitivity=u’first’)
Plot the subset of data that shows all information in the most concise way, with the chosen sensitivity.

Parameters

• condensed (bool, optional) – If the results should be plotted in the most concise way. If
not, all plots are created. Default is True.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. If None, no sensitivity is plotted. Default is
“first”.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, “total”, or
None.

plot_all(sensitivity=u’first’)
Plot the results for all model/features, with the chosen sensitivity.

Parameters sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) –
Which Sobol indices to plot. “sobol_first” and “first” is the first order Sobol indices, while
“sobol_total” and “total” are the total order Sobol indices. If None, no sensitivity is plotted.
Default is “first”.
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Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, “total”, or
None.

plot_all_sensitivities()
Plot the results for all model/features, with all sensitivities.

Raises ValueError – If a Datafile is not loaded.

plot_condensed(sensitivity=u’first’)
Plot the subset of data that shows all information in the most concise way, with the chosen sensitivity.

Parameters sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which
Sobol indices to plot. “sobol_first” and “first” is the first order Sobol indices, while
“sobol_total” and “total” are the total order Sobol indices. If None, no sensitivity is plot-
ted. Default is “first”.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, “total”, or
None.

prediction_interval_1d(feature=None, hardcopy=True, show=False, **plot_kwargs)
Plot the prediction interval for a specific 1 dimensional model/feature.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

sensitivity_1d(feature=None, sensitivity=u’first’, hardcopy=True, show=False, **plot_kwargs)
Plot the sensitivity for a specific 1 dimensional model/feature. The Sensitivity for each parameter is plotted
in sepearate figures.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises
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• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

sensitivity_1d_combined(feature=None, sensitivity=u’first’, hardcopy=True, show=False,
**plot_kwargs)

Plot the sensitivity for a specific 1 dimensional model/feature. The Sensitivity for each parameter is plotted
in the same plot.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

sensitivity_1d_grid(feature=None, sensitivity=u’first’, hardcopy=True, show=False,
**plot_kwargs)

Plot the sensitivity for a specific 1 dimensional model/feature. The Sensitivity for each parameter is plotted
in the same figure, but separate plots.

Parameters

• feature ({None, str}, optional) – The name of the model/feature. If None, the name of the
model is used. Default is None.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol in-
dices to plot. “sobol_first” and “first” is the first order Sobol indices, while “sobol_total”
and “total” are the total order Sobol indices. Default is “first”.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

• ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”, or “total”.

variance_1d(feature, hardcopy=True, show=False, **plot_kwargs)
Plot the variance for a specific 1 dimensional model/feature.

Parameters

• feature (str) – The name of the model/feature.
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• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 1 dimensional.

variance_2d(feature, hardcopy=True, show=False, **plot_kwargs)
Plot the variance for a specific 2 dimensional model/feature.

Parameters

• feature (str) – The name of the model/feature.

• hardcopy (bool, optional) – If the plot should be saved to file. Default is True.

• show (bool, optional) – If the plot should be shown on screen. Default is False.

• **plot_kwargs, optional – Matplotlib plotting arguments.

Raises

• ValueError – If a Datafile is not loaded.

• ValueError – If the model/feature is not 2 dimensional.
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CHAPTER 12

Logging

Uncertainpy uses the logging module to log to both file and to screen. All loggers are named class_instance.
__module__ + "." + class_instance.__class__.__name__. An example, the logger in a
Data```object is named ``uncertainpy.data.Data. If the the module name does not start with “un-
certainpy.”, “uncertainpy.” as added as a prefix.

A file handler is only added to the logging by UncertaintyQuantification. If level is set to None, no log-
ging in Uncertainpy is set up and the logging can be customized as necessary by using the logging module. This
should only be done if you know what you are doing. Be warned that logging is performed in parallel. If the
MultiprocessLoggingHandler() is not used when trying to write to a single log file, Uncertainpy will hang.
This happens because several processes try to log to the same file.

Logging can easily be added to custom models and features by:

# Import the functions and libraries needed
from uncertainpy.utils import create_logger
import logging

# Set up a logger. This adds a screen handlers to the "uncertainpy" logger
# if it does not already exist
# All log messages with level "info" or higher will be logged.
setup_logger("uncertainpy.logger_name", level="info")

# Get the logger recently created
logger = logging.getLogger("uncertainpy.logger_name")

# Log a message with the level "info".
logger.info("info logging message here")

Note that if you want to use the logger setup in Uncertainpy, the name of your loggers should start with
uncertainpy..
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12.1 API Reference

class uncertainpy.utils.logger.MultiprocessLoggingHandler(filename, mode)
Adapted from: https://stackoverflow.com/questions/641420/how-should-i-log-while-using-multiprocessing-in-python

close()
Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers, _handlers, which is used for handler
lookup by name. Subclasses should ensure that this gets called from overridden close() methods.

emit(record)
Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so raises a NotImplementedError.

setFormatter(fmt)
Set the formatter for this handler.

class uncertainpy.utils.logger.MyFormatter(fmt=u’%(levelno)s: %(msg)s’)
The logging formater.

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The mes-
sage attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is called to format the event time. If there is
exception information, it is formatted using formatException() and appended to the message.

class uncertainpy.utils.logger.TqdmLoggingHandler(stream=None)
Set logging so logging to stream works with Tqdm, logging now uses tqdm.write.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

uncertainpy.utils.logger.add_file_handler(name=u’uncertainpy’, file-
name=u’uncertainpy.log’)

Add file handler to logger with name, if no file handler already exists for the given logger.

Parameters

• name (str, optional) – Name of the logger. Default name is “uncertainpy”.

• filename (str) – Name of the logfile. If None, no logging to file is performed. Default is
“uncertainpy.log”.

uncertainpy.utils.logger.add_screen_handler(name=u’uncertainpy’)
Adds a logging to console (a console handler) to logger with name, if no screen handler already exists for the
given logger.

Parameters name (str, optional) – Name of the logger. Default name is “uncertainpy”.
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uncertainpy.utils.logger.get_logger(class_instance)
Get a logger with name given from class_instance: class_instance.__module__ + "." +
class_instance.__class__.__name__.

Parameters class_instance (instance) – Class instance used to get the logger name.

Returns logger – The logger object.

Return type Logger object

uncertainpy.utils.logger.has_handlers(logger)
See if this logger has any handlers configured.

Loop through all handlers for this logger and its parents in the logger hierarchy. Return True if a handler was
found, else False. Stop searching up the hierarchy whenever a logger with the “propagate” attribute set to zero
is found - that will be the last logger which is checked for the existence of handlers.

Returns True if the logger or any parent logger has handlers attached.

Return type bool

uncertainpy.utils.logger.setup_logger(name, level=u’info’)
Create a logger with name.

Parameters

• name (str) – Name of the logger

• level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the thresh-
old for the logging level. Logging messages less severe than this level is ignored. If None,
no logger is set up. Default logger level is info.

uncertainpy.utils.logger.setup_module_logger(class_instance, level=u’info’)
Create a logger with a name from the current class. “uncertainpy.” is added to the beginning of the name if the
module name does not start with “uncertainpy.”. If no handlers, adds handlers to the logger named uncertainpy.

Parameters

• class_instance (instance) – Class instance used to set the logger name.
class_instance.__module__ + "." + class_instance.__class__.
__name__.

• level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the thresh-
old for the logging level. Logging messages less severe than this level is ignored. If None,
no logger level is set. Setting logger level overwrites the logger level set from configuration
file. Default logger level is “info”.
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CHAPTER 13

Utilities

Various utility functions.

13.1 API Reference

uncertainpy.utils.utility.contains_nan(values)
Checks if None or numpy.nan exists in values. Returns True if any there are at least one occurrence of
None or numpy.nan.

Parameters values (array_like, list, number) – values where to check for occurrences of None or
np.nan. Can be irregular and have any number of nested elements.

Returns True if values has at least one occurrence of None or numpy.nan.

Return type bool

uncertainpy.utils.utility.is_regular(values)
Test if values is regular or not, meaning it has a varying length of nested elements.

Parameters values (array_like, list, number) – values to check if it is regular or not, meaning it has
a varying length of nested elements.

Returns True if the feature is regular or False if the feature is irregular.

Return type bool

Notes

Does not ignore numpy.nan, so [numpy.nan, [1, 2]] returns False.

uncertainpy.utils.utility.lengths(values)
Get the lengths of a list and all its sublists.

Parameters values (list) – List where we want to find the lengths of the list and all sublists.

Returns A list with the lengths of the list and all sublists.
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Return type list

uncertainpy.utils.utility.none_to_nan(values)
Converts None values in values to np.nan.

Parameters values (array_like, list, number) – Values where to convert occurrences of None con-
verted to np.nan. Can be irregular and have any number of nested elements.

Returns values – values with all occurrences of None converted to np.nan.

Return type array_like, list, number

uncertainpy.utils.utility.set_nan(values, index)
Set the index of a arbitrarly nested list to nan

Parameters

• values (array_like, list, number) – Values where to set index to numpy.nan. Can be
irregular and have any number of nested elements.

• index (array_like, list, number) – Index where to set values to numpy.nan.
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CHAPTER 14

Core

This module contains the classes that are responsible for running the model and calculate features of the model, both in
parallel (RunModel and Parallel), as well as the class for performing the uncertainty calculations (UncertaintyCalcu-
lations). It also contains the base classes that are responsible for setting and updating parameters, models and features
across classes (Base and ParameterBase).

14.1 UncertaintyCalculations

UncertaintyCalculations is the class responsible for performing the uncertainty calculations. Here we ex-
plain how they are performed as well as well as which options the user have to customize the calculations An insight
into how the calculations are performed is not required to use Uncertainpy. In most cases, the default settings works
fine. In addition to the customization options shown below, Uncertainpy has support for implementing entirely custom
uncertainty quantification and sensitivity analysis methods. This is only recommended for expert users, as knowledge
of both Uncertainpy and uncertainty quantification is needed.

14.1.1 Quasi-Monte Carlo method

To use the quasi-Monte Carlo method, we call quantify() with method="mc", and the optional argument
nr_mc_samples:

data = UQ.quantify(
method="mc",
nr_mc_samples=10**4,

)

By default, the quasi-Monte Carlo method quasi-randomly draws 10000 parameter samples from the joint multivariate
probability distribution of the parameters 𝜌𝑄 using Hammersley sampling (Hammersley, 1960). As the name indi-
cates, the number of samples is specified by the nr_mc_samples argument. The model is evaluated for each of
these parameter samples, and features are calculated for each model evaluation (when applicable). To speed up the
calculations, Uncertainpy uses the multiprocess Python package (McKerns et al., 2012) to perform this step in parallel.
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When model and feature calculations are done, Uncertainpy calculates the mean, variance, and 5th and 95th percentile
(which gives the 90% prediction interval) for the model output as well as for each feature.

14.1.2 Polynomial chaos expansions

To use polynomial chaos expansions we use quantify() with the argument method="pc", which takes a set of
optional arguments (default are values specified):

data = UQ.quantify(
method="pc",
pc_method="collocation",
rosenblatt=False,
polynomial_order=4,
nr_collocation_nodes=None,
quadrature_order=None,
nr_pc_mc_samples=10**4,

)

As previously mentioned, Uncertainpy allows the user to select between point collocation
(pc_method="collocation") and pseudo-spectral projections (pc_method="spectral"). The goal
is to create separate polynomial chaos expansions hat{U} for the model and each feature. In both methods, Uncer-
tainpy creates the orthogonal polynomial 𝜑𝑛 using 𝜌𝑄 and the three-term recurrence relation if available, otherwise
the discretized Stieltjes method (Stieltjes, 1884) is used. Uncertainpy uses a third order polynomial expansion,
changed with polynomial_order. The polynomial 𝜑𝑛 is shared between the model and all features, since they
have the same uncertain input parameters, and therefore the same 𝜌𝑄. Only the polynomial coefficients 𝑐𝑛 differ
between the model and each feature.

The two polynomial chaos methods differ in terms of how they calculate 𝑐𝑛. For point collocation Uncertainpy uses
2(𝑁𝑝 + 1) collocation nodes, as recommended by (Hosder et al., 2007), where N_p is the number of polynomial
chaos expansion factors. The number of collocation nodes can be customized with nr_collocation_nodes, but
the new number of nodes must be chosen carefully. The collocation nodes are sampled from 𝜌𝑄 using Hammersley
sampling (Hammersley, 1960). The model and features are calculated for each of the collocation nodes. As with the
quasi-Monte Carlo method, this step is performed in parallel. The polynomial coefficients 𝑐𝑛 are calculated using
Tikhonov regularization (Rifkin and Lipert, 2007) from the model and feature results.

For the pseudo-spectral projection, Uncertainpy chooses nodes and weights using a quadrature scheme, instead of
choosing nodes from 𝜌𝑄. The quadrature scheme used is Leja quadrature with a Smolyak sparse grid (Narayan and
Jakeman, 2014; Smolyak, 1963). The Leja quadrature is of order two greater than the polynomial order, but can be
changed with quadrature_order. The model and features are calculated for each of the quadrature nodes. As
before, this step is performed in parallel. The polynomial coefficients 𝑐𝑛 are then calculated from the quadrature
nodes, weights, and model and feature results.

When Uncertainpy has derived �̂� for the model and features, it uses �̂� to compute the mean, variance, and the first
and total order Sobol indices. The first and total order Sobol indices are also summed and normalized. Finally,
Uncertainpy uses �̂� as a surrogate model, and performs a quasi-Monte Carlo method with Hammersley sampling and
nr_pc_mc_samples=10**4 samples to find the 5th and 95th percentiles.

If the model parameters have a dependent joint multivariate distribution, the Rosenblatt transformation must be used
by setting rosenblatt=True. To perform the transformation Uncertainpy chooses 𝜌𝑅 to be a multivariate inde-
pendent normal distribution, which is used instead of 𝜌𝑄 to perform the polynomial chaos expansions. Both the point
collocation method and the pseudo-spectral method are performed as described above. The only difference is that we
use 𝜌𝑅 instead of 𝜌𝑄, and use the Rosenblatt transformation to transform the selected nodes from 𝑅 to 𝑄, before they
are used in the model evaluation.
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14.1.3 API Reference

class uncertainpy.core.UncertaintyCalculations(model=None, parame-
ters=None, features=None, cre-
ate_PCE_custom=None, cus-
tom_uncertainty_quantification=None,
CPUs=u’max’, logger_level=u’info’)

Perform the calculations for the uncertainty quantification and sensitivity analysis.

This class performs the calculations for the uncertainty quantification and sensitivity analysis of the model and
features. It implements both quasi-Monte Carlo methods and polynomial chaos expansions using either point
collocation or pseudo-spectral method. Both of the polynomial chaos expansion methods have support for the
rosenblatt transformation to handle dependent variables.

Parameters

• model ({None, Model or Model subclass instance, model function}, optional) – Model to
perform uncertainty quantification on. For requirements see Model.run. Default is None.

• parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribu-
tion}, . . . ], list of Parameter instances, list [[name, value or Chaospy distribution], . . . ], list
[[name, value, Chaospy distribution or callable that returns a Chaospy distribution],. . . ],})
– List or dictionary of the parameters that should be created. On the form parameters =

– {name_1: parameter_object_1, name: parameter_object_2,
...}

– {name_1: value_1 or Chaospy distribution, name_2: value_2
or Chaospy distribution, ...}

– [parameter_object_1, parameter_object_2, ...],

– [[name_1, value_1 or Chaospy distribution], ...].

– [[name_1, value_1, Chaospy distribution or callable that
returns a Chaospy distribution], ...]

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all will be calculated. Default is None.

• create_PCE_custom (callable, optional) – A custom method for calculating
the polynomial chaos approximation. For the requirements of the function see
UncertaintyCalculations.create_PCE_custom. Overwrites existing
create_PCE_custom method. Default is None.

• custom_uncertainty_quantification (callable, optional) – A custom method
for calculating uncertainties. For the requirements of the function see
UncertaintyCalculations.custom_uncertainty_quantification.
Overwrites existing custom_uncertainty_quantification method. Default is
None.

• CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the
model and features. If None, no multiprocessing is used. If “max”, the maximum number
of CPUs on the computer (multiprocess.cpu_count()) is used. Default is “max”.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed. Default logger level is “info”.

Variables
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• model (Model or Model subclass) – The model to perform uncertainty quantifi-
cation on.

• parameters (Parameters) – The uncertain parameters.

• features (Features or Features subclass) – The features of the model to
perform uncertainty quantification on.

• runmodel (RunModel) – Runmodel object responsible for evaluating the model and cal-
culating features.

See also:

uncertainpy.features.Features, uncertainpy.Parameter, uncertainpy.Parameters,
uncertainpy.models.Model, uncertainpy.core.RunModel

uncertainpy.models.Model.run Requirements for the model run function.

analyse_PCE(U_hat, distribution, data, nr_samples=10000)
Calculate the statistical metrics from the polynomial chaos approximation.

Parameters

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

• nr_samples (int, optional) – Number of samples for the Monte Carlo sampling of the
polynomial chaos approximation. Default is 10**4.

Returns data – The data parameter given as input with the statistical metrics added.

Return type Data

Notes

The data parameter should contain (but not necessarily) the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

7. data.errored

When returned data additionally contains:

8. data["model/features"].mean

9. data["model/features"].variance

10. data["model/features"].percentile_5

11. data["model/features"].percentile_95

12. data["model/features"].sobol_first, if more than 1 parameter
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13. data["model/features"].sobol_total, if more than 1 parameter

14. data["model/features"].sobol_first_average, if more than 1 parameter

15. data["model/features"].sobol_total_average, if more than 1 parameter

See also:

uncertainpy.Data()

average_sensitivity(data, sensitivity=u’sobol_first’)
Calculate the average of the sensitivities for the model and all features and add them to data. Ignores any
occurrences of numpy.NaN.

Parameters

• data (Data) – A data object with all model and feature evaluations, as well as all calculated
statistical metrics.

• sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – The sensitivity
to normalize and sum. “sobol_first” and “1” are for the first order Sobol indice while
“sobol_total” and “t” is for the total order Sobol indices. Default is “sobol_first”.

Returns data – The data object with the average of the sensitivities for the model and all features
added.

Return type Data

See also:

uncertainpy.Data()

convert_uncertain_parameters(uncertain_parameters=None)
Converts uncertain_parameter(s) to a list of uncertain parameter(s), and checks if it is a legal set of uncer-
tain parameter(s).

Parameters uncertain_parameters ({None, str, list}, optional) – The name(s) of the uncertain
parameters to use. If None, a list of all uncertain parameters are returned. Default is None.

Returns uncertain_parameters – A list with the name of all uncertain parameters.

Return type list

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

See also:

uncertainpy.Parameters()

create_PCE_collocation(uncertain_parameters=None, polynomial_order=4,
nr_collocation_nodes=None, allow_incomplete=True)

Create the polynomial approximation U_hat using pseudo-spectral projection.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose. If None, nr_collocation_nodes = 2* number of expansion factors + 2. Default
is None.
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• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

Returns

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

The returned data should contain (but not necessarily) the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

7. data.errored

The model and feature do not necessarily give results for each node. The collocation method is robust
towards missing values as long as the number of results that remain is high enough.

The polynomial chaos expansion method for uncertainty quantification approximates the model with a
polynomial that follows specific requirements. This polynomial can be used to quickly calculate the un-
certainty and sensitivity of the model.

To create the polynomial chaos expansion we first find the polynomials using the three-therm recurrence
relation if available, otherwise the discretized Stieltjes method is used. Then we use point collocation to
find the expansion coefficients for the model and each feature of the model.

In point collocation we require the polynomial approximation to be equal the model at a set of collocation
nodes. This results in a set of linear equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from the distribution. We evaluate
the model and each feature in parallel, and solve the resulting set of linear equations with Tikhonov regu-
larization.

See also:

uncertainpy.Data(), uncertainpy.Parameters()

create_PCE_collocation_rosenblatt(uncertain_parameters=None, polyno-
mial_order=4, nr_collocation_nodes=None, al-
low_incomplete=True)

Create the polynomial approximation U_hat using pseudo-spectral projection and the Rosenblatt transfor-
mation. Works for dependend uncertain parameters.

Parameters
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• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose. If None, nr_collocation_nodes = 2* number of expansion factors + 2. Default
is None.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

Returns

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

The returned data should contain (but not necessarily) the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

The model and feature do not necessarily give results for each node. The collocation method is robust
towards missing values as long as the number of results that remain is high enough.

The polynomial chaos expansion method for uncertainty quantification approximates the model with a
polynomial that follows specific requirements. This polynomial can be used to quickly calculate the un-
certainty and sensitivity of the model.

We use the Rosenblatt transformation to transform from dependent to independent variables before we
create the polynomial chaos expansion. We first find the polynomials from the independent distributions
using the three-therm recurrence relation if available, otherwise the discretized Stieltjes method is used.
Then we use the point collocation with the Rosenblatt transformation to find the expansion coefficients for
the model and each feature of the model.

In point collocation we require the polynomial approximation to be equal the model at a set of collocation
nodes. This results in a set of linear equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from the independent distribution.
We then transform the nodes using the Rosenblatte transformation and evaluate the model and each feature
in parallel. We solve the resulting set of linear equations with Tikhonov regularization.

See also:
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uncertainpy.Data(), uncertainpy.Parameters()

create_PCE_custom
A custom method for calculating the polynomial chaos approximation. Must follow the below require-
ments.

Parameters

• self (UncertaintyCalculation) – An explicit self is required as the first argument. self can
be used inside the custom function.

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• **kwargs – Any number of optional arguments.

Returns

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

This method can be implemented to create a custom method to calculate the polynomial chaos expansion.
The method must calculate and return the return arguments described above.

The returned data should contain (but not necessarily) the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

The method analyse_PCE is called after the polynomial approximation has been created.

Usefull methods in Uncertainpy are:

1. uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters

2. uncertainpy.core.Uncertaintycalculations.create_distribution

3. uncertainpy.core.RunModel.run

See also:

uncertainpy.Data, uncertainpy.Parameters

uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters
Converts uncertain parameters to allowed list
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uncertainpy.core.Uncertaintycalculations.create_distribution Creates the
uncertain parameter distribution

uncertainpy.core.RunModel.run Runs the model

create_PCE_spectral(uncertain_parameters=None, polynomial_order=4, quadra-
ture_order=None, allow_incomplete=True)

Create the polynomial approximation U_hat using pseudo-spectral projection.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• quadrature_order ({int, None}, optional) – The order of the Leja quadrature method. If
None, quadrature_order = polynomial_order + 2. Default is None.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

Returns

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

The returned data should contain (but not necessarily) the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

7. data.errored

The model and feature do not necessarily give results for each node. The pseudo-spectral methods is
sensitive to missing values, so allow_incomplete should be used with care.

The polynomial chaos expansion method for uncertainty quantification approximates the model with a
polynomial that follows specific requirements. This polynomial can be used to quickly calculate the un-
certainty and sensitivity of the model.
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To create the polynomial chaos expansion we first find the polynomials using the three-therm recurrence
relation if available, otherwise the discretized Stieltjes method is used. Then we use the pseudo-spectral
projection to find the expansion coefficients for the model and each feature of the model.

Pseudo-spectral projection is based on least squares minimization and finds the expansion coefficients
through numerical integration. The integration uses a quadrature scheme with weights and nodes. We use
Leja quadrature with Smolyak sparse grids to reduce the number of nodes required. For each of the nodes
we evaluate the model and calculate the features, and the polynomial approximation is created from these
results.

See also:

uncertainpy.Data(), uncertainpy.Parameters()

create_PCE_spectral_rosenblatt(uncertain_parameters=None, polynomial_order=4,
quadrature_order=None, allow_incomplete=True)

Create the polynomial approximation U_hat using pseudo-spectral projection and the Rosenblatt transfor-
mation. Works for dependend uncertain parameters.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• quadrature_order ({int, None}, optional) – The order of the Leja quadrature method. If
None, quadrature_order = polynomial_order + 2. Default is None.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

Returns

• U_hat (dict) – A dictionary containing the polynomial approximations for the model and
each feature as chaospy.Poly objects.

• distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.

• data (Data) – A data object containing the values from the model evaluation and feature
calculations.

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

data should contain (but not necessarily) the following, if applicable:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

7. data.errored
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The model and feature do not necessarily give results for each node. The pseudo-spectral methods is
sensitive to missing values, so allow_incomplete should be used with care.

The polynomial chaos expansion method for uncertainty quantification approximates the model with a
polynomial that follows specific requirements. This polynomial can be used to quickly calculate the un-
certainty and sensitivity of the model.

We use the Rosenblatt transformation to transform from dependent to independent variables before we cre-
ate the polynomial chaos expansion. We first find the polynomials from the independent distributions using
the three-therm recurrence relation if available, otherwise the discretized Stieltjes method is used. Then
we use the pseudo-spectral projection with the Rosenblatt transformation to find the expansion coefficients
for the model and each feature of the model.

Pseudo-spectral projection is based on least squares minimization and finds the expansion coefficients
through numerical integration. The integration uses a quadrature scheme with weights and nodes. We use
Leja quadrature with Smolyak sparse grids to reduce the number of nodes required. We use the Rosenblatt
transformation to transform the quadrature nodes before they are sent to the model evaluation. For each of
the nodes we evaluate the model and calculate the features, and the polynomial approximation is created
from these results.

See also:

uncertainpy.Data(), uncertainpy.Parameters()

create_distribution(uncertain_parameters=None)
Create a joint multivariate distribution for the selected parameters from univariate distributions.

Parameters uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to
use when creating the joint multivariate distribution. If None, the joint multivariate distribu-
tion for all uncertain parameters is created. Default is None.

Returns distribution – The joint multivariate distribution for the given parameters.

Return type chaospy.Dist

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

If a multivariate distribution is defined in the Parameters.distribution, that multivariate distribution is re-
turned. Otherwise the joint multivariate distribution for the selected parameters is created from the uni-
variate distributions.

See also:

uncertainpy.Parameters()

create_mask(evaluations)
Mask evaluations that do not give results (anything but np.nan or None).

Parameters evaluations (array_like) – Evaluations for the model.

Returns

• masked_evaluations (list) – The evaluations that have results (not numpy.nan or None).

• mask (boolean array) – The mask itself, used to create the masked arrays.

create_masked_evaluations(data, feature)
Mask all model and feature evaluations that do not give results (anything but np.nan) and the corresponding
nodes.
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Parameters

• data (Data) – A Data object with evaluations for the model and each feature. Must contain
data[feature].evaluations.

• feature (str) – Name of the feature or model to mask.

Returns

• masked_evaluations (list) – The evaluations that have results (not numpy.nan or None).

• mask (boolean array) – The mask itself, used to create the masked arrays.

create_masked_nodes(data, feature, nodes)
Mask all model and feature evaluations that do not give results (anything but np.nan) and the corresponding
nodes.

Parameters

• data (Data) – A Data object with evaluations for the model and each feature. Must contain
data[feature].evaluations.

• feature (str) – Name of the feature or model to mask.

• nodes (array_like) – The nodes used to evaluate the model.

Returns

• masked_evaluations (array_like) – The evaluations which have results.

• mask (boolean array) – The mask itself, used to create the masked arrays.

• masked_nodes (array_like) – The nodes that correspond to the evaluations with results.

create_masked_nodes_weights(data, feature, nodes, weights)
Mask all model and feature evaluations that do not give results (anything but numpy.nan) and the corre-
sponding nodes.

Parameters

• data (Data) – A Data object with evaluations for the model and each feature. Must contain
data[feature].evaluations.

• nodes (array_like) – The nodes used to evaluate the model.

• feature (str) – Name of the feature or model to mask.

• weights (array_like) – Weights corresponding to each node.

Returns

• masked_evaluations (array_like) – The evaluations which have results.

• mask (boolean array) – The mask itself, used to create the masked arrays.

• masked_nodes (array_like) – The nodes that correspond to the evaluations with results.

• masked_weights (array_like) – Masked weights that correspond to evaluations with re-
sults.

custom_uncertainty_quantification
A custom uncertainty quantification method. Must follow the below requirements.

Parameters

• self (UncertaintyCalculation) – An explicit self is required as the first argument. self can
be used inside the custom function.
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• **kwargs – Any number of optional arguments.

Returns data – A Data object with calculated uncertainties.

Return type Data

Notes

Usefull methods in Uncertainpy are:

1. uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters - Converts uncertain param-
eters to an allowed list.

2. uncertainpy.core.Uncertaintycalculations.create_distribution - Creates the uncertain parameter distri-
bution

3. uncertainpy.core.RunModel.run - Runs the model and all features.

See also:

uncertainpy.Data

uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters
Converts uncertain parameters to list

uncertainpy.core.Uncertaintycalculations.create_distribution Create uncer-
tain parameter distribution

uncertainpy.core.RunModel.run Runs the model

dependent(distribution)
Check if a distribution is dependent or not.

Parameters distribution (chaospy.Dist) – A Chaospy probability distribution.

Returns dependent – True if the distribution is dependent, False if is independent.

Return type bool

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

mc_calculate_sobol(evaluations, nr_uncertain_parameters, nr_samples)
Calculate the Sobol indices.

Parameters

• evaluations (array_like) – The model evaluations, evaluated for the samples created by
SALIB.sample.saltelli.
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• nr_uncertain_parameters (int) – Number of uncertain parameters.

• nr_samples (int) – Number of samples used in the Monte Carlo sampling.

Returns

• sobol_first (list) – The first order Sobol indices for each uncertain parameter.

• sobol_total (list) – The total order Sobol indices for each uncertain parameter.

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

monte_carlo(uncertain_parameters=None, nr_samples=10000, seed=None, al-
low_incomplete=True)

Perform an uncertainty quantification using the quasi-Monte Carlo method.

Parameters

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling.
Default is 10**4.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.

• allow_incomplete (bool, optional) – If the uncertainty quantification should be performed
for features or models with incomplete evaluations. Default is True.

Returns data – A data object with all model and feature evaluations, as well as all calculated
statistical metrics.

Return type Data

Raises ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

Notes

The returned data should contain the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method
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7. data.errored

8. data["model/features"].mean

9. data["model/features"].variance

10. data["model/features"].percentile_5

11. data["model/features"].percentile_95

12. data["model/features"].sobol_first, if more than 1 parameter

13. data["model/features"].sobol_total, if more than 1 parameter

14. data["model/features"].sobol_first_average, if more than 1 parameter

15. data["model/features"].sobol_total_average, if more than 1 parameter

In the quasi-Monte Carlo method we quasi-randomly draw (nr_samples/
2)*(nr_uncertain_parameters + 2) (nr_samples=10**4 by default) parameter samples
using Saltelli’s sampling scheme (1). We require this number of samples to be able to calculate the Sobol
indices. We evaluate the model for each of these parameter samples and calculate the features from
each of the model results. This step is performed in parallel to speed up the calculations. Then we use
nr_samples‘ of the model and feature results to calculate the mean, variance, and 5th and 95th percentile
for the model and each feature. Lastly, we use all calculated model and each feature results to calculate
the Sobol indices using Saltellie’s approach.

References

See also:

uncertainpy.Data(), uncertainpy.Parameters()

parameters
Model parameters.

Parameters new_parameters ({None, Parameters instance, list of Parameter instances, list
[[name, value, distribution], . . . ]}) – Either None, a Parameters instance or a list of the pa-
rameters that should be created. The two lists are similar to the arguments sent to Parameters.
Default is None.

Returns parameters – Parameters of the model. If None, no parameters have been set.

Return type {None, Parameters}

See also:

uncertainpy.Parameter, uncertainpy.Parameters

polynomial_chaos(method=u’collocation’, rosenblatt=u’auto’, uncertain_parameters=None,
polynomial_order=4, nr_collocation_nodes=None, quadrature_order=None,
nr_pc_mc_samples=10000, allow_incomplete=True, seed=None, **cus-
tom_kwargs)

Perform an uncertainty quantification and sensitivity analysis using polynomial chaos expansions.

Parameters

• method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when cre-
ating the polynomial chaos approximation. “collocation” is the point collocation method
“spectral” is pseudo-spectral projection, and “custom” is the custom polynomial method.
Default is “collocation”.

1 Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola (2010). “Variance based sensitivity analysis of model output.
Design and estimator for the total sensitivity index.” Computer Physics Communications, 181(2):259-270, doi:10.1016/j.cpc.2009.09.018.

14.1. UncertaintyCalculations 165



Uncertainpy Documentation, Release 1.2.3

• rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used.
The Rosenblatt transformation must be used if the uncertain parameters have dependent
variables. If “auto” the Rosenblatt transformation is used if there are dependent parame-
ters, and it is not used of the parameters have independent distributions. Default is “auto”.

• uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use
when creating the polynomial approximation. If None, all uncertain parameters are used.
Default is None.

• polynomial_order (int, optional) – The polynomial order of the polynomial approxima-
tion. Default is 4.

• nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to
choose, if point collocation is used. If None, nr_collocation_nodes = 2* number of expan-
sion factors + 2. Default is None.

• quadrature_order ({int, None}, optional) – The order of the Leja quadrature
method, if pseudo-spectral projection is used. If None, quadrature_order =
polynomial_order + 2. Default is None.

• nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of
the polynomial chaos approximation.

• allow_incomplete (bool, optional) – If the polynomial approximation should be per-
formed for features or models with incomplete evaluations. Default is True.

• seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.

Returns data – A data object with all model and feature values, as well as all calculated statis-
tical metrics.

Return type Data

Raises

• ValueError – If a common multivariate distribution is given in Parameters.distribution
and not all uncertain parameters are used.

• ValueError – If method not one of “collocation”, “spectral” or “custom”.

• NotImplementedError – If “custom” is chosen and have not been implemented.

Notes

The returned data should contain the following:

1. data["model/features"].evaluations

2. data["model/features"].time

3. data["model/features"].labels

4. data.model_name

5. data.incomplete

6. data.method

7. data.errored

8. data["model/features"].mean

9. data["model/features"].variance

10. data["model/features"].percentile_5
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11. data["model/features"].percentile_95

12. data["model/features"].sobol_first, if more than 1 parameter

13. data["model/features"].sobol_total, if more than 1 parameter

14. data["model/features"].sobol_first_average, if more than 1 parameter

15. data["model/features"].sobol_total_average, if more than 1 parameter

The model and feature do not necessarily give results for each node. The collocation method is robust
towards missing values as long as the number of results that remain is high enough. The pseudo-spectral
method on the other hand, is sensitive to missing values, so allow_incomplete should be used with care in
that case.

The polynomial chaos expansion method for uncertainty quantification approximates the model with a
polynomial that follows specific requirements. This polynomial can be used to quickly calculate the un-
certainty and sensitivity of the model.

To create the polynomial chaos expansion we first find the polynomials using the three-therm recurrence
relation if available, otherwise the discretized Stieltjes method is used. Then we use point collocation or
pseudo-spectral projection to find the expansion coefficients for the model and each feature of the model.

In point collocation we require the polynomial approximation to be equal the model at a set of collocation
nodes. This results in a set of linear equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from the distribution. We evaluate
the model and each feature in parallel, and solve the resulting set of linear equations with Tikhonov regu-
larization.

Pseudo-spectral projection is based on least squares minimization and finds the expansion coefficients
through numerical integration. The integration uses a quadrature scheme with weights and nodes. We use
Leja quadrature with Smolyak sparse grids to reduce the number of nodes required. For each of the nodes
we evaluate the model and calculate the features, and the polynomial approximation is created from these
results.

If we have dependent uncertain parameters we must use the Rosenblatt transformation. We use the Rosen-
blatt transformation to transform from dependent to independent variables before we create the polynomial
chaos expansion. We first find the polynomials from the independent distributions using the three-term re-
currence relation if available, otherwise the discretized Stieltjes method is used

Both pseudo-spectral projection and point collocation is performed using the independent distribution, the
only difference is that we use the Rosenblatt transformation to transform the nodes from the independent
distribution to the dependent distribution.

See also:

uncertainpy.Data(), uncertainpy.Parameters()

separate_output_values(evaluations, nr_uncertain_parameters, nr_samples)

Notes

Separate the output from the model evaluations, evaluated for the samples created by
SALIB.sample.saltelli.

Parameters

• evaluations (array_like) – The model evaluations, evaluated for the samples created by
SALIB.sample.saltelli.

• nr_uncertain_parameters (int) – Number of uncertain parameters.
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• nr_samples (int) – Number of samples used in the Monte Carlo sampling.

Returns

• A (array_like) – The A sample matrix from saltellie et. al. 2010.

• B (array_like) – The B sample matrix from saltellie et. al. 2010.

• AB (array_like) – The AB sample matrix from saltellie et. al. 2010.

Notes

Adapted from SALib/analyze/sobol.py:

https://github.com/SALib/SALib/blob/master/SALib/analyze/sobol.py

14.2 Base and ParameterBase

These classes enable setting and updating the model, features and parameters (not in all classes) across classes from
the top of the hierarchy (UncertaintyQuantification) and down (Parallel). To add updating of the current class, as well
as the classes further down the setters can be overridden. One example of this from RunModel):

@ParameterBase.model.setter
def model(self, new_model):

ParameterBase.model.fset(self, new_model)

self._parallel.model = self.model

14.2.1 API Reference

Base

class uncertainpy.core.Base(model=None, features=None, logger_level=u’info’)
Set and update features and model.

Parameters

• model ({None, Model or Model subclass instance, model function}, optional) – Model to
perform uncertainty quantification on. For requirements see Model.run. Default is None.

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all listed features will be calculated. Default is None.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging is performed. Default logger level is “info”.

Variables

• model (uncertainpy.Model or subclass of uncertainpy.Model) – The
model to perform uncertainty quantification on.

• features (uncertainpy.Features or subclass of uncertainpy.
Features) – The features of the model to perform uncertainty quantification on.
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See also:

uncertainpy.features.Features, uncertainpy.models.Model

uncertainpy.models.Model.run Requirements for the model run function.

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

ParameterBase

class uncertainpy.core.ParameterBase(model=None, parameters=None, features=None, log-
ger_level=u’info’)

Set and update features, model and parameters.

Parameters

• model ({None, Model or Model subclass instance, model function}, optional) – Model to
perform uncertainty quantification on. For requirements see Model.run. Default is None.

• parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribu-
tion}, . . . ], list of Parameter instances, list [[name, value or Chaospy distribution], . . . ], list
[[name, value, Chaospy distribution or callable that returns a Chaospy distribution],. . . ],})
– List or dictionary of the parameters that should be created. On the form parameters =

– {name_1: parameter_object_1, name: parameter_object_2,
...}

– {name_1: value_1 or Chaospy distribution, name_2: value_2
or Chaospy distribution, ...}

– [parameter_object_1, parameter_object_2, ...],
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– [[name_1, value_1 or Chaospy distribution], ...].

– [[name_1, value_1, Chaospy distribution or callable that
returns a Chaospy distribution], ...]

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all will be calculated. Default is None.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored.
Default is “info”.

Variables

• model (Model or Model subclass) – The model to perform uncertainty quantifi-
cation on.

• parameters (Parameters) – The uncertain parameters.

• features (Features or subclass of Features) – The features of the model
to perform uncertainty quantification on.

• logger_level ({"info", "debug", "warning", "error",
"critical", None}) – Set the threshold for the logging level. Logging messages less
severe than this level is ignored. If None, no logging is performed.

See also:

uncertainpy.features.Features, uncertainpy.models.Model

uncertainpy.models.Model.run Requirements for the model run function.

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:
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uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

parameters
Model parameters.

Parameters new_parameters ({None, Parameters instance, list of Parameter instances, list
[[name, value, distribution], . . . ]}) – Either None, a Parameters instance or a list of the pa-
rameters that should be created. The two lists are similar to the arguments sent to Parameters.
Default is None.

Returns parameters – Parameters of the model. If None, no parameters have been set.

Return type {None, Parameters}

See also:

uncertainpy.Parameter, uncertainpy.Parameters

14.3 Parallel

Parallel calculates the model and features of the model for one specific set of model parameters. Parallel is
the class that is run in parallel.

14.3.1 API Reference

class uncertainpy.core.Parallel(model=None, features=None, logger_level=u’info’)
Calculates the model and features of the model for one set of model parameters. Is the class that is run in
parallel.

Parameters

• model ({None, Model or Model subclass instance, model function}, optional) – Model to
perform uncertainty quantification on. For requirements see Model.run. Default is None.

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all will be calculated. Default is None.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed Default logger level is “info”.

Variables

• model (uncertainpy.Parallel.model) –

• features (uncertainpy.Parallel.features) –

See also:

uncertainpy.features.Features, uncertainpy.models.Model

uncertainpy.models.Model.run Requirements for the model run function.

create_interpolations(result)
Create an interpolation.

Model or feature result s that have a varying number of time steps, are interpolated. Interpolation is
only performed for one dimensional result. Zero dimensional result does not need to be interpolated, and
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support for interpolating two dimensional and above result have currently not been implemented. Adds a
“interpolation” key-value pair to result.

Parameters result (dict) – The model and feature results. The model and each feature each
has a dictionary with the time values, "time", and model/feature results, "values". An
example:

result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9,
→˓10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9])},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

Returns

result – If an interpolation has been created, those features/model have “interpolation” and
the corresponding interpolation object added to each features/model dictionary. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}
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Return type dict

Notes

If either model or feature results are irregular, the results must be interpolated for Chaospy
to be able to create the polynomial approximation. For 1D results this is done with scipy:
InterpolatedUnivariateSpline(time, U, k=3).

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

interpolation_1d(result, feature)
Create an interpolation for an 1D result.

Parameters result (dict) – The model and feature results. The model and each feature each
has a dictionary with the time values, "time", and model/feature results, "values". An
example:

result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9,
→˓10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9])},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

Returns interpolation – The result of the interpolation. If either the time or values contain None
or numpy.nan, None is returned.
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Return type {scipy.interpolate.fitpack2.InterpolatedUnivariateSpline, None}

Raises

• ValueError – If the values of the feature are not 1D.

• ValueError – If the time of the feature is not 1D.

Notes

The interpolation is performed using scipy: InterpolatedUnivariateSpline(time,
values, k=3).

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

run(model_parameters)
Run a model and calculate features from the model output, return the results.

The model is run and each feature of the model is calculated from the model output, time (time values)
and values (model result). The results are interpolated if they are irregular, meaning they return a varying
number of steps. An interpolation is created and added to results for the model/features that are irregular.
Each instance of None is converted to numpy.nan.

Parameters model_parameters (dictionary) – All model parameters as a dictionary. These
parameters are sent to model.run().

Returns

result – The model and feature results. The model and each feature each has a dictionary
with the time values, "time", and model/feature results, "values". If an interpolation
has been created, those features/model also has "interpolation" added. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},
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"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

Return type dictionary

Notes

Time time and result values are calculated from the model. Then sent to model.postprocess, and the post-
processed result from model.postprocess is added to result. time and values are sent to features.preprocess
and the preprocessed results is used to calculate each feature.

See also:

uncertainpy.utils.utility.none_to_nan() Method for converting from None to NaN

uncertainpy.features.Features.preprocess() preprocessing model results before fea-
tures are calculated

uncertainpy.models.Model.postprocess() posteprocessing of model results

14.4 RunModel

RunModel is responsible for running the model in parallel for all selected sets of parameters. It runs Parallel in
Parallel. RunModel organizes the results in a Data object.

14.4.1 API Reference

class uncertainpy.core.RunModel(model, parameters, features=None, logger_level=u’info’,
CPUs=u’max’)

Calculate model and feature results for a series of different model parameters, and store them in a Data object.

Parameters

• model ({None, Model or Model subclass instance, model function}, optional) – Model to
perform uncertainty quantification on. For requirements see Model.run. Default is None.

• parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribu-
tion}, . . . ], list of Parameter instances, list [[name, value or Chaospy distribution], . . . ], list
[[name, value, Chaospy distribution or callable that returns a Chaospy distribution],. . . ],})
– List or dictionary of the parameters that should be created. On the form parameters =

– {name_1: parameter_object_1, name: parameter_object_2,
...}

– {name_1: value_1 or Chaospy distribution, name_2: value_2
or Chaospy distribution, ...}

– [parameter_object_1, parameter_object_2, ...],
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– [[name_1, value_1 or Chaospy distribution], ...].

– [[name_1, value_1, Chaospy distribution or callable that
returns a Chaospy distribution], ...]

• features ({None, Features or Features subclass instance, list of feature functions}, optional)
– Features to calculate from the model result. If None, no features are calculated. If list of
feature functions, all will be calculated. Default is None.

• logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the
threshold for the logging level. Logging messages less severe than this level is ignored. If
None, no logging to file is performed. Default logger level is “info”.

• CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the
model and features. If None, no multiprocessing is used. If “max”, the maximum number
of CPUs on the computer (multiprocess.cpu_count()) is used. Default is “max”.

Variables

• model (uncertainpy.Model or subclass of uncertainpy.Model) – The
model to perform uncertainty quantification on.

• parameters (uncertainpy.Parameters) – The uncertain parameters.

• features (uncertainpy.Features or subclass of uncertainpy.
Features) – The features of the model to perform uncertainty quantification on.

• CPUs (int) – The number of CPUs used when calculating the model and features.

See also:

uncertainpy.features.Features, uncertainpy.Parameter, uncertainpy.Parameters,
uncertainpy.models.Model

uncertainpy.models.Model.run Requirements for the model run function.

apply_interpolation(results, feature)
Perform interpolation of one model/feature using the interpolation objects created by Parallel.

Parameters

• results (list) – A list where each element is a result dictionary for each set of model
evaluations. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9],

[0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6,
→˓7, 8, 9, 10]),
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"time": array([0, 1, 2, 3, 4, 5, 6,
→˓ 7, 8, 9]),

"interpolation": scipy
→˓interpolation object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

• feature (str) – Name of a feature or the model.

Returns

• time (array_like) – The time array with the greatest number of time steps.

• interpolated_results (list) – A list containing all interpolated model/features results. In-
terpolated at the points of the time results with the greatest number of time steps.

Notes

Chooses the time array with the highest number of time points and use this time array to interpolate the
model/feature results in each of those points. If an interpolation is None, gives numpy.nan instead.

create_model_parameters(nodes, uncertain_parameters)
Combine nodes (values) with the uncertain parameter names to create a list of dictionaries corresponding
to the model values for each model evaluation.

Parameters

• nodes (array) – A series of different set of parameters. The model and each feature is
evaluated for each set of parameters in the series.

• uncertain_parameters (list) – A list of names of the uncertain parameters.

Returns

model_parameters – A list where each element is a dictionary with the model parameters
for a single evaluation. An example:

model_parameter = {"parameter 1": value 1, "parameter 2": value 2, .
→˓..}
model_parameters = [model_parameter 1, model_parameter 2, ...]

Return type list

evaluate_nodes(nodes, uncertain_parameters)
Evaluate the the model and calculate the features for the nodes (values) for the uncertain parameters.

Parameters

• nodes (array) – The values for the uncertain parameters to evaluate the model and features
for.

• uncertain_parameters (list) – A list of the names of all uncertain parameters.

Returns

results – A list where each element is a result dictionary for each set of model evaluations.
An example:

14.4. RunModel 177



Uncertainpy Documentation, Release 1.2.3

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

Return type list

Raises ImportError – If xvfbwrapper is not installed.

features
Features to calculate from the model result.

Parameters new_features ({None, Features or Features subclass instance, list of feature func-
tions}) – Features to calculate from the model result. If None, no features are calculated. If
list of feature functions, all will be calculated.

Returns features – Features to calculate from the model result. If None, no features are calcu-
lated.

Return type {None, Features object}

See also:

uncertainpy.features.Features, uncertainpy.features.
GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures,
uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.
NetworkFeatures

is_regular(results, feature)
Test if feature in results is regular or not, meaning it has a varying number of values for each evaluation.
Ignores results that contains numpy.nan.

Parameters

• results (list) – A list where each element is a result dictionary for each set of model
evaluations. An example:
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result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9],

[0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6,
→˓7, 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓ 7, 8, 9]),

"interpolation": scipy
→˓interpolation object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

• feature (str) – Name of a feature or the model.

Returns True if the feature is regular or False if the feature is irregular.

Return type bool

model
Model to perform uncertainty quantification on. For requirements see Model.run.

Parameters new_model ({None, Model or Model subclass instance, model function}) – Model
to perform uncertainty quantification on.

Returns model – Model to perform uncertainty quantification on.

Return type Model or Model subclass instance

See also:

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.
models.NestModel, uncertainpy.models.NeuronModel

parameters
Model parameters.

Parameters new_parameters ({None, Parameters instance, list of Parameter instances, list
[[name, value, distribution], . . . ]}) – Either None, a Parameters instance or a list of the pa-
rameters that should be created. The two lists are similar to the arguments sent to Parameters.
Default is None.

Returns parameters – Parameters of the model. If None, no parameters have been set.

Return type {None, Parameters}

See also:
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uncertainpy.Parameter, uncertainpy.Parameters

regularize_nan_results(results)
Regularize arrays with that only contain numpy.nan values.

Make each result for each feature have the same the same shape, if they only contain numpy.nan values.

Parameters results (list) – A list where each element is a result dictionary for each set of model
evaluations. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

Returns

results – A list with where the only nan results have been regularized. On the form:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),
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"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

Return type list

results_to_data(results)
Store results in a Data object.

Stores the time and (interpolated) results for the model and each feature in a Data object. Performs the
interpolation calculated in Parallel, if the result is irregular.

Parameters results (list) – A list where each element is a result dictionary for each set of model
evaluations. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7,
→˓8, 9])},

"feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature0d": {"values": 1,
"time": np.nan},

"feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9],

[0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓ 9]]),

"time": array([0, 1, 2, 3, 4, 5, 6, 7, 8,
→˓9])},

"feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7,
→˓ 8, 9, 10]),

"time": array([0, 1, 2, 3, 4, 5, 6,
→˓7, 8, 9]),

"interpolation": scipy interpolation
→˓object},

"feature_invalid": {"values": np.nan,
"time": np.nan}}

results = [result 1, result 2, ..., result N]

Returns data – A Data object with time and (interpolated) results for the model and each feature.

Return type Data object

Notes

Sets the following in data, if applicable: 1. data["model/features"].evaluations, which
contains all values 2. data["model/features"].time 3. data["model/features"].
labels 4. data.model_name

See also:
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uncertainpy.Data()

run(nodes, uncertain_parameters)
Evaluate the the model and calculate the features for the nodes (values) for the uncertain parameters. The
results are interpolated as necessary.

Parameters

• nodes (array) – A series of different set of parameters. The model and each feature is
evaluated for each set of parameters in the series.

• uncertain_parameters (list) – A list of names of the uncertain parameters.

Returns data – A Data object with time and (interpolated) results for the model and each feature.

Return type Data object

See also:

uncertainpy.Data()
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CHAPTER 15

Theory

15.1 The problem definition

Consider a model 𝑈 that depends on space 𝑥 and time 𝑡, has 𝐷 uncertain input parameters 𝑄 = [𝑄1, 𝑄2, . . . , 𝑄𝐷],
and gives the output 𝑌 :

𝑌 = 𝑈(𝑥, 𝑡,𝑄).

The output 𝑌 can be any value within the output space Ω𝑌 and has an unknown probability density function 𝜌𝑌 .
The goal of an uncertainty quantification is to describe the unknown 𝜌𝑌 through statistical metrics. We are only
interested in the input and output of the model, and we ignore all details on how the model works. The model 𝑈 is
thus considered a black box, and may represent any model, for example a spiking neuron model that returns a voltage
trace, or a network model that return a spike train.

We assume the model includes uncertain parameters that can be described by a multivariate probability density function
𝜌𝑄. Examples of parameters that can be uncertain in neuroscience are the conductance of a single ion channel, or
the synaptic weight between two species of neurons in a network. If the uncertain parameters are independent, the
multivariate probability density function 𝜌𝑄 can be given as separate univariate probability density functions 𝜌𝑄𝑖

, one
for each uncertain parameter 𝑄𝑖. The joint multivariate probability density function for the independent uncertain
parameters is then:

𝜌𝑄 =

𝐷∏︁
𝑖=1

𝜌𝑄𝑖 .

In cases where the uncertain input parameters are dependent, the multivariate probability density function 𝜌𝑄 must be
defined directly. We assume the probability density functions are known, and are not here concerned with how they
are determined. They may be the product of a series of measurements, a parameter estimation, or educated guesses
made by experts.

15.2 Uncertainty quantification

The goal of an uncertainty quantification is to describe the unknown distribution of the model output 𝜌𝑌 through
statistical metrics. The two most common statistical metrics used in this context are the mean E (also called the
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expectation value) and the variance V. The mean is defined as:

E[𝑌 ] =

∫︁
Ω𝑌

𝑦𝜌𝑌 (𝑦)𝑑𝑦,

and tells us the expected value of the model output 𝑌 . The variance is defined as:

V[𝑌 ] =

∫︁
Ω𝑌

(𝑦 − E[𝑌 ])
2
𝜌𝑌 (𝑦)𝑑𝑦,

and tells us how much the output varies around the mean.

Another useful metric is the (100 · 𝑥)-th percentile 𝑃𝑥 of 𝑌 , which defines a value below which 100 · 𝑥 percent of the
simulation outputs are located. For example, 5% of the simulations of a model will give an output lower than the 5-th
percentile. The (100 · 𝑥)-th percentile is defined as:

𝑥 =

∫︁ 𝑃𝑥

−∞
𝜌𝑌 (𝑦)𝑑𝑦.

We can combine two percentiles to create a prediction interval 𝐼𝑥, which is a range of values such that a 100 · 𝑥
percentage of the outputs 𝑌 occur within this range:

𝐼𝑥 =
[︀
𝑃(𝑥/2), 𝑃(1−𝑥/2)

]︀
.

The 90% prediction interval gives us the interval within 90% of the 𝑌 outcomes occur, which also means that 5% of
the outcomes are above and 5% below this interval.

15.3 Sensitivity analysis

Sensitivity analysis quantifies how much of the uncertainty in the model output each uncertain parameter is responsible
for. It is the computational equivalent of analysis of variance (ANOVA) performed by experimentalists (Archer et al.,
1997). For a review of different sensitivity analysis methods, see Hamby (1994); Borgonovo and Plischke (2016).
Several different sensitivity measures exist, but Uncertainpy uses the commonly used Sobol sensitivity indices (Sobol,
1990). The Sobol sensitivity indices quantify how much of the variance in the model output each uncertain parameter
is responsible for. If a parameter has a low sensitivity index, variations of this parameter results in comparatively small
variations in the final model output. On the other hand, if a parameter has a high sensitivity index, a change in this
parameter leads to a dramatic change in the model output.

A sensitivity analysis provides a better understanding of the relationship between the parameters and output of a
model. This can be useful in a model reduction context. For example, a parameter with a low sensitivity index can
essentially be set to any fixed value (within the explored distribution), without affecting the variance of the model
much. In some cases, such an analysis can justify leaving out entire mechanisms from a model. For example, if a
single neuron model is insensitive to the conductance of a given ion channel 𝑔𝑥, this ion channel could possibly be
removed from the model without changing the model behavior much. Additionally, a model-based sensitivity analysis
can guide the experimental focus, so that special care is taken to obtain accurate measures of parameters with high
sensitivity indices, while more crude measures are acceptable for parameters with low sensitivity indices.

There exist several types of Sobol indices. The first order Sobol sensitivity index 𝑆 measures the direct effect each
parameter has on the variance of the model:

𝑆𝑖 =
V[E[𝑌 |𝑄𝑖]

V[𝑌 ]
.

Here, E[𝑌 |𝑄𝑖] denotes the expected value of the output 𝑌 when parameter 𝑄𝑖 is fixed. The first order Sobol sensitivity
index tells us the expected reduction in the variance of the model when we fix parameter 𝑄𝑖. The sum of the first order
Sobol sensitivity indices can not exceed one (Glen and Isaacs, 2012).
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Higher order sobol indices exist, and give the sensitivity due interactions between a parameter 𝑄𝑖 and various other
parameters. It is customary to only calculate the first and total order indices (Saltelli et al., 2010). The total Sobol
sensitivity index 𝑆𝑇𝑖 includes the sensitivity of both first order effects as well as the sensitivity due to interactions
(covariance) between a given parameter 𝑄𝑖 and all other parameters (Homma and Saltelli, 1996). It is defined as:

𝑆𝑇𝑖 = 1 − V[E[𝑌 |𝑄−𝑖]]

V[𝑌 ]
,

where 𝑄−𝑖 denotes all uncertain parameters except 𝑄𝑖. The sum of the total Sobol sensitivity indices is equal to or
greater than one (Glen and Isaacs, 2012). If no higher order interactions are present, the sum of both the first and total
order sobol indices are equal to one.

We might want to compare Sobol indices across different features (see in Features). This can be problematic when we
have features with different number of output dimensions. In the case of a zero dimensional output the Sobol indices
is a single number, while for a one dimensional output we get Sobol indices for each point in time. To better be able to
compare the Sobol indices across such features, we therefore calculate the average of both the first order Sobol indiceŝ︀𝑆, and the total order Sobol indices ̂︀𝑆𝑇 .

15.4 (Quasi-)Monte Carlo methods

A typical way to obtain the statistical metrics mentioned above is to use (quasi-)Monte Carlo methods. We give a
brief overview of these methods here, for more comprehensive reviews see Lemieux, (2009); Rubinstein and Kroese
(2016).

The general idea behind the standard Monte Carlo method is quite simple. A set of parameters is pseudo-randomly
drawn from the joint multivariate probability density function 𝜌𝑄 of the parameters. The model is then evaluated for
the sampled parameter set. This process is repeated thousand of times, and statistical metrics such as the mean and
variance are computed for the resulting series of model outputs. The problem with the standard Monte Carlo method
is that a very high number of model evaluations is required to get reliable statistics. If the model is computationally
expensive, the Monte Carlo method may require insurmountable computer power.

Quasi-Monte Carlo methods improve upon the standard Monte Carlo method by using variance-reduction techniques
to reduce the number of model evaluations needed. These methods are based on increasing the coverage of the sampled
parameter space by distributing the samples more evenly. Fewer samples are then required to get a given accuracy.
Instead of pseudo-randomly selecting parameters from 𝜌𝑄, the samples are selected using a low-discrepancy sequence
such as the Hammersley sequence (Hammersley, 1960). Quasi-Monte Carlo methods are faster than the Monte Carlo
method, as long as the number of uncertain parameters is sufficiently small (Lemieux, 2009).

Uncertainpy allows quasi-Monte Carlo methods to be used to compute the statistical metrics. When this option is cho-
sen, the metrics are computed as follows. With 𝑁 model evaluations, which gives the results 𝑌 = [𝑌1, 𝑌2, . . . , 𝑌𝑁 ],
the mean is given by

E[𝑌 ] ≈ 1

𝑁

𝑁∑︁
𝑖=1

𝑌𝑖,

and the variance by

V[𝑌 ] ≈ 1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑌𝑖 − E[𝑌 ])
2
.

Prediction intervals are found by sorting the model evaluations 𝑌 in an increasing order, and then find the (100 ·𝑥/2)-
th and (100 · (1− 𝑥/2))-th percentiles. The Sobol indices can be calculated using the method in (Saltelli et al., 2010).
The total number of samples 𝑁𝑡 required by this method is:

𝑁𝑡 = 𝑁(𝐷 + 2)
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15.5 Polynomial chaos expansions

A recent mathematical framework for estimating uncertainty is that of polynomial chaos expansions (Xiu and Hes-
thaven, 2005). Polynomial chaos expansions can be seen as a subset of polynomial approximation methods. For a
review of polynomial chaos expansions see (Xiu, (2010)). Polynomial chaos expansions are much faster than (quasi-
)Monte Carlo methods as long as the number of uncertain parameters is relatively low, typically smaller than about
twenty (Crestaux et al.,2009). This is the case for many neuroscience models, and even for models with a higher
number of uncertain parameters, the analysis could be performed for selected subsets of the parameters.

The general idea behind polynomial chaos expansions is to approximate the model 𝑈 with a polynomial expansion �̂� :

𝑈 ≈ �̂�(𝑥, 𝑡,𝑄) =

𝑁𝑝−1∑︁
𝑛=0

𝑐𝑛(𝑥, 𝑡)𝜑𝑛(𝑄),

where 𝜑𝑛 denote polynomials and 𝑐𝑛 denote expansion coefficients. The number of expansion factors 𝑁𝑝 is given by

𝑁𝑝 =

(︂
𝐷 + 𝑝

𝑝

)︂
,

where 𝑝 is the polynomial order. The number of expansion coefficients in the multivariate case (𝐷 > 1) is greater than
the polynomial order. This is because the multivariate polynomial is created by multiplying univariate polynomials
together. The polynomials 𝜑𝑛(𝑄) are chosen so they are orthogonal with respect to the probability density function
𝜌𝑄, which ensures useful statistical properties.

When creating the polynomial chaos expansion, the first step is to find the orthogonal polynomials 𝜑𝑛, which in
Uncertainpy is done using the so called three-term recurrence relation (Xiu, 2010). The next step is to estimate the
expansion coefficients 𝑐𝑛. The non-intrusive methods for doing this can be divided into two classes, point-collocation
methods and pseudo-spectral projection methods, both of which are implemented in Uncertainpy.

Point collocation is the default method used in Uncertainpy. This method is based on demanding that the polynomial
approximation is equal to the model output evaluated at a set of collocation nodes drawn from the joint probability
density function 𝜌𝑄. This demand results in a set of linear equations for the polynomial coefficients 𝑐𝑛, which can
be solved by the use of regression methods. The regression method used in Uncertainpy is Tikhonov regularization
(Rifkin and Lippert, 2007).

Pseudo-spectral projection methods are based on least squares minimization in the orthogonal polynomial space, and
finds the expansion coefficients 𝑐𝑛 through numerical integration. The integration uses a quadrature scheme with
weights and nodes, and the model is evaluated at these nodes. The quadrature method used in Uncertainpy is Leja
quadrature, with Smolyak sparse grids to reduce the number of nodes required (Narayan and Jakeman, 2014; Smolyak,
1963). Pseudo-spectral projection methods are only used in Uncertainpy when requested by the user.

Several of the statistical metrics of interest can be obtained directly from the polynomial chaos expansion �̂� . The
mean is simply

E[𝑈 ] ≈ E[�̂� ] = 𝑐0,

and the variance is

V[𝑈 ] ≈ V[�̂� ] =

𝑁𝑝−1∑︁
𝑛=1

𝛾𝑛𝑐
2
𝑛,

where 𝛾𝑛 is a normalization factor defined as

𝛾𝑛 = E
[︀
𝜑2

𝑛(𝑄)
]︀
.

The first and total order Sobol indices can also be calculated directly from the polynomial chaos expansion (Sudret,
2008; Crestaux et al.,2009). On the other hand, the percentiles and prediction interval must be estimated using �̂� as a
surrogate model, and then perform the same procedure as for the (quasi-)Monte Carlo methods.
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15.6 Dependency between uncertain parameters

One of the underlying assumptions when creating the polynomial chaos expansion is that the model parameters are
independent. However, dependent parameters in neuroscience models are quite common (Achard and De Schutter,
2006). Fortunately, models containing dependent parameters can be analyzed with Uncertainpy by the aid of the
Rosenblatt transformation from Chaospy (Rosenblatt, 1952; Feinberg and Langtangen, 2015). The idea is to use the
Rosenblatt transformation to create a reformulated model ̃︀𝑈(𝑥, 𝑡,𝑅), that takes an arbitrary independent parameter
set 𝑅 as input, instead of the original dependent parameter set 𝑄. We use the Rosenblatt transformation to transform
from 𝑅 to 𝑄, which makes it so ̃︀𝑈 give the same output (and statistics) as the original model:

̃︀𝑈(𝑥, 𝑡,𝑅) = 𝑈(𝑥, 𝑡,𝑄).

We can then perform polynomial chaos expansion as normal on the reformulated model, since it has independent
parameters.

The Rosenblatt transformation 𝑇𝑄 transforms the random variable 𝑄 to the random variable 𝐻 , which in a statistical
context behaves as if it were drawn uniformly from the unit hypercube [0, 1]

𝐷.

𝑇𝑄(𝑄) = 𝐻.

Here, 𝑇𝑄 denotes a Rosenblatt transformation which is uniquely defined by 𝜌𝑄 (the probability distribution of 𝑄). We
can use the Rosenblatt transformation to transform from 𝑅 to 𝑄 (through 𝐻) to regain our original parameters:

𝑇𝑄(𝑄) = 𝐻 = 𝑇𝑅(𝑅)

𝑄 = 𝑇−1
𝑄 (𝑇𝑅(𝑅)).

Using this relation between 𝑅 and 𝑄 in we can reformulate our model to take 𝑅 as input, but still give the same
results:

𝑈(𝑥, 𝑡,𝑄) = 𝑈(𝑥, 𝑡, 𝑇−1
𝑄 (𝑇𝑅(𝑅))) = ̃︀𝑈(𝑥, 𝑡,𝑅).

The statistical analysis can now be performed on this reformulated model ̃︀𝑈 as before.

Here we give an overview of the theory behind uncertainty quantification and sensitivity analysis with a focus on
(quasi-)Monte Carlo methods and polynomial chaos expansions, the methods implemented in Uncertainpy.

Uncertainty quantification and sensitivity analysis provide rigorous procedures to analyse and characterize the effects
of parameter uncertainty on the output of a model. The methods for uncertainty quantification and sensitivity analysis
can be divided into global and local methods. Local methods keep all but one model parameter fixed and explore
how much the model output changes due to variations in that single parameter. Global methods, on the other hand,
allows the entire parameter space to vary simultaneously. Global methods can therefore identify complex dependencies
between the model parameters in terms of how they affect the model output.

The global methods can be further divided into intrusive and non-intrusive methods. Intrusive methods require changes
to the underlying model equations, and are often challenging to implement. Models in neuroscience are often created
with the use of advanced simulators such as NEST and NEURON. Modifying the underlying equations of models using
these simulators is a complicated task best avoided. Non-intrusive methods, on the other hand, consider the model
as a black box, and can be applied to any model without needing to modify the model equations or implementation.
Global, non-intrusive methods are therefore the methods of choice in Uncertainpy. The uncertainty calculations in
Uncertainpy is based on the Python package Chaospy, which provides global non-intrusive methods for uncertainty
quantification and sensitivity analysis.

We start by introducing the problem definition. Next, we introduce the statistical measurements for uncertainty quan-
tification and sensitivity analysis. Further, we give an introduction to (quasi-)Monte Carlo methods and Polynomial
chaos expansions, the two methods used to calculate the uncertainty and sensitivity in Uncertainpy. We next ex-
plain how Uncertainpy handle cases with dependent model parameters. We note that insight into this theory is not a
prerequisite for using Uncertainpy.
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• Problem definition

• Uncertainty quantification

• Sensitivity analysis

• (Quasi-)Monte Carlo methods

• Polynomial chaos expansions

• Dependency between uncertain parameters

188 Chapter 15. Theory



CHAPTER 16

Uncertainpy paper

The Uncertainpy paper can be found here: Tennøe S, Halnes G, and Einevoll GT (2018) Uncertainpy: A Python
Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience. Front. Neuroinform.
12:49. doi: 10.3389/fninf.2018.00049.
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CHAPTER 17

Getting started

• Installation

• Quickstart
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CHAPTER 18

Examples

This is a collection of examples that shows the use of Uncertainpy for a few different case studies.

• A simple cooling coffee cup

• A cooling coffee cup with dependent parameters

• The Hodgkin-Huxley model

• A multi-compartment model of a thalamic interneuron

• A sparsely connected recurrent network

193



Uncertainpy Documentation, Release 1.2.3

194 Chapter 18. Examples



CHAPTER 19

Frequently asked questions

• Multiple model outputs.
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CHAPTER 20

Content of Uncertainpy

This is the content of Uncertainpy and contains instructions for how to use all classes and functions, along with their
API.

• UncertaintyQuantification

• Models

– General models

– Nest models

– Neuron models

– Multiple model outputs

• Parameters

• Features

– General features

– Spiking features

– Spikes (used by the spiking features)

– Electrophys Feature Extraction Library (eFEL) features

– Network features

– General spiking features

– General network features

• Data

• Utility distributions

• Plotting

• Logging

• Utilities
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• Core

– Base classes

– Parallel

– Run model

– Uncertainty calculations
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CHAPTER 21

Theory

Here we give an overview of the theory behind uncertainty quantification and sensitivity analysis with a focus on
(quasi-)Monte Carlo methods and polynomial chaos expansions, the methods implemented in Uncertainpy.

• Theory on uncertainty quantification and sensitivity analysis

– Problem definition

– Uncertainty quantification

– Sensitivity analysis

– (Quasi-)Monte Carlo methods

– Polynomial chaos expansions

– Dependency between uncertain parameters
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Python Module Index

u
uncertainpy, ??
uncertainpy.utils.logger, 146
uncertainpy.utils.utility, 149
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Index

Symbols
__delitem__() (uncertainpy.Data method), 127
__delitem__() (uncertainpy.DataFeature method),

130
__delitem__() (uncertainpy.Parameters method), 69
__getitem__() (uncertainpy.Data method), 127
__getitem__() (uncertainpy.DataFeature method),
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__getitem__() (uncertainpy.Parameters method), 69
__iter__() (uncertainpy.Data method), 127
__iter__() (uncertainpy.DataFeature method), 130
__iter__() (uncertainpy.Parameters method), 69
__len__() (uncertainpy.Data method), 127
__len__() (uncertainpy.DataFeature method), 131
__len__() (uncertainpy.Parameters method), 69
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__setitem__() (uncertainpy.DataFeature method),
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__setitem__() (uncertainpy.Parameters method), 69
__str__() (uncertainpy.Data method), 127
__str__() (uncertainpy.Parameter method), 71
__str__() (uncertainpy.Parameters method), 69

A
accommodation_index() (uncer-

tainpy.features.SpikingFeatures method),
84

add_features() (uncertainpy.Data method), 127
add_features() (uncertainpy.features.EfelFeatures

method), 98
add_features() (uncertainpy.features.Features

method), 76
add_features() (uncer-

tainpy.features.GeneralNetworkFeatures
method), 113

add_features() (uncer-
tainpy.features.GeneralSpikingFeatures
method), 118

add_features() (uncer-

tainpy.features.NetworkFeatures method),
104

add_features() (uncer-
tainpy.features.SpikingFeatures method),
84

add_file_handler() (in module uncer-
tainpy.utils.logger), 146

add_screen_handler() (in module uncer-
tainpy.utils.logger), 146

all_evaluations() (uncer-
tainpy.plotting.PlotUncertainty method),
135

analyse_PCE() (uncer-
tainpy.core.UncertaintyCalculations method),
154

apply_interpolation() (uncer-
tainpy.core.RunModel method), 176

attribute_feature_1d() (uncer-
tainpy.plotting.PlotUncertainty method),
136

attribute_feature_2d() (uncer-
tainpy.plotting.PlotUncertainty method),
136

average_AHP_depth() (uncer-
tainpy.features.SpikingFeatures method),
85

average_AP_overshoot() (uncer-
tainpy.features.SpikingFeatures method),
85

average_AP_width() (uncer-
tainpy.features.SpikingFeatures method),
85

average_cv() (uncertainpy.features.NetworkFeatures
method), 105

average_duration() (uncer-
tainpy.features.SpikingFeatures method),
86

average_firing_rate() (uncer-
tainpy.features.NetworkFeatures method),
105
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average_isi() (uncer-
tainpy.features.NetworkFeatures method),
105

average_local_variation() (uncer-
tainpy.features.NetworkFeatures method),
106

average_sensitivity() (uncer-
tainpy.core.UncertaintyCalculations method),
155

average_sensitivity() (uncer-
tainpy.plotting.PlotUncertainty method),
136

average_sensitivity_all() (uncer-
tainpy.plotting.PlotUncertainty method),
137

average_sensitivity_grid() (uncer-
tainpy.plotting.PlotUncertainty method),
137

B
Base (class in uncertainpy.core), 168
binned_isi() (uncertainpy.features.NetworkFeatures

method), 106

C
calculate_all_features() (uncer-

tainpy.features.EfelFeatures method), 99
calculate_all_features() (uncer-

tainpy.features.Features method), 77
calculate_all_features() (uncer-

tainpy.features.GeneralNetworkFeatures
method), 113

calculate_all_features() (uncer-
tainpy.features.GeneralSpikingFeatures
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