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Welcome to Uncertainpy’s documentation!

Uncertainpy is a python toolbox for uncertainty quantification and sensitivity
analysis tailored towards computational neuroscience.

Uncertainpy is model independent and treats the model as a black box where the
model can be left unchanged. Uncertainpy implements both quasi-Monte Carlo
methods and polynomial chaos expansions using either point collocation or the
pseudo-spectral method. Both of the polynomial chaos expansion methods have
support for the rosenblatt transformation to handle dependent input parameters.

Uncertainpy is feature based, i.e., if applicable, it recognizes and calculates
the uncertainty in features of the model, as well as the model itself.
Examples of features in neuroscience can be spike timing and the action
potential shape.

Uncertainpy is tailored towards neuroscience models, and comes with several
common neuroscience models and features built in, but new models and features can
easily be implemented. It should be noted that while Uncertainpy is tailored
towards neuroscience, the implemented methods are general, and Uncertainpy can
be used for many other types of models and features within other fields.







Uncertainpy paper

The Uncertainpy paper can be found here: Tennøe S, Halnes G, and Einevoll GT (2018) Uncertainpy: A Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience. Front. Neuroinform. 12:49. doi: 10.3389/fninf.2018.00049.
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Examples

This is a collection of examples that shows the use of Uncertainpy for a few
different case studies.


	A simple cooling coffee cup


	A cooling coffee cup with dependent parameters


	The Hodgkin-Huxley model


	A multi-compartment model of a thalamic interneuron


	A sparsely connected recurrent network







Frequently asked questions


	Multiple model outputs.







Content of Uncertainpy

This is the content of Uncertainpy and contains instructions for how to use
all classes and functions, along with their API.


	UncertaintyQuantification


	
	Models

	
	General models


	Nest models


	Neuron models


	Multiple model outputs










	Parameters


	
	Features

	
	General features


	Spiking features


	Spikes (used by the spiking features)


	Electrophys Feature Extraction Library (eFEL) features


	Network features


	General spiking features


	General network features










	Data


	Utility distributions


	Plotting


	Logging


	Utilities


	
	Core

	
	Base classes


	Parallel


	Run model


	Uncertainty calculations















Theory

Here we give an overview of the theory behind uncertainty quantification and
sensitivity analysis with a focus on (quasi-)Monte Carlo methods and polynomial
chaos expansions, the methods implemented in Uncertainpy.


	
	Theory on uncertainty quantification and sensitivity analysis

	
	Problem definition


	Uncertainty quantification


	Sensitivity analysis


	(Quasi-)Monte Carlo methods


	Polynomial chaos expansions


	Dependency between uncertain parameters
















          

      

      

    

  

    
      
          
            
  
Installation

Uncertainpy works with with Python 3.
Uncertainpy can easily be installed using pip. The minimum install is:


pip install uncertainpy




To install all requirements you can write:


pip install uncertainpy[all]




Specific optional requirements can also be installed,
see below for an explanation.
Uncertainpy can also be installed by cloning the Github repository [https://github.com/simetenn/uncertainpy]:

$ git clone https://github.com/simetenn/uncertainpy
$ cd /path/to/uncertainpy
$ python setup.py install





setup.py are able to install different set of dependencies.
For all options run:

$ python setup.py --help





Alternatively, Uncertainpy can be easily installed (minimum install) with conda
using conda-forge channel:

$ conda install -c conda-forge uncertainpy





The above installation, within a conda environment, is only compatible with Python 3.x.


Dependencies

Uncertainpy has the following dependencies:


	chaospy


	tqdm


	h5py


	multiprocess


	numpy


	scipy


	seaborn


	matplotlib


	xvfbwrapper


	six


	SALib


	exdir




These are installed with the minimum install.

xvfbwrapper requires xvfb, which can be installed with:

sudo apt-get install xvfb





Additionally Uncertainpy has a few optional dependencies for specific classes
of models and for features of the models.


EfelFeatures

uncertainpy.EfelFeatures requires the Python package


	efel




which can be installed with:

pip install uncertainpy[efel_features]





or:

pip install efel





or through:

python setup.py install --efel_features








NetworkFeatures

uncertainpy.NetworkFeatures requires the Python packages


	elephant


	neo


	quantities




which can be installed with:

pip install uncertainpy[network_features]





or:

pip install elephant, neo, quantities





or through:

python setup.py install --network_features








NeuronModel

uncertainpy.NeuronModel requires the external simulator NEURON [https://www.neuron.yale.edu/neuron/download]
(with Python), a simulator for neurons.
NEURON must be installed by the user.




NestModel

uncertainpy.NestModel requires the external simulator
NEST [http://www.nest-simulator.org/installation] (with Python),
a simulator for network of neurons.
NEST must be installed by the user.






Test suite

Uncertainpy comes with an extensive test suite that can be run with the test.py script.
For how to use test.py run:

$ python test.py --help





test.py has all the above dependencies in addition to:


	click




These dependencies can be installed with:

pip install uncertainpy[tests]





or:

pip install click





or through:

python setup.py install --tests








Documentation

The documentation is generated through sphinx, and has the following
dependencies:


	sphinx


	sphinx_rtd_theme




These dependencies can be installed with:

pip install uncertainpy[docs]





or:

pip install sphinx, sphinx_rtd_theme





or through:

python setup.py install --docs





The documentation is build by:

cd docs
make html











          

      

      

    

  

    
      
          
            
  
Quickstart

This section gives a brief overview of what you need to know to perform an
uncertainty quantification and sensitivity analysis with Uncertainpy.
It only gives the most basic way of getting started, many more options than
shown here are available.

The uncertainty quantification and sensitivity analysis
includes three main components:



	The model we want to examine.


	The parameters of the model.


	Specifications of features in the model output.







The model and the parameters are required,
while the feature specification is optional.
The above components are brought together in the
UncertaintyQuantification class.
This class is the main class to interact with,
and is a wrapper for the uncertainty calculations.


Uncertainty quantification

The UncertaintyQuantification  class is used to define the problem,
perform the uncertainty quantification, and to save and visualize the results.
Among others, UncertaintyQuantification takes the following arguments:

UQ = un.UncertaintyQuantification(
        model=...,                       # Required
        parameters=...,                  # Required
        features=...,                    # Optional
    )





The arguments are given as instances of their corresponding Uncertainpy classes
(Models, Parameters, and Features).
These classes are briefly described below.
After the problem is defined, an uncertainty quantification and sensitivity
analysis can be performed using the UncertaintyQuantification.quantify method.
Among others, quantify takes the following arguments:

data = UQ.quantify(
    method="pc"``"mc",
    pc_method="collocation"``"spectral",
    rosenblatt=False``True
)





The method argument allows the user to choose whether Uncertainpy
should use polynomial chaos ("pc") or quasi-Monte carlo ("mc") methods to
calculate the relevant statistical metrics.
If polynomial chaos are chosen, pc_method further specifies whether point
collocation ("collocation") or spectral projection
("spectral") methods is used to calculate the expansion
coefficients.
Finally, rosenblatt (False or True)
determines if the Rosenblatt transformation should be used.
The Rosenblatt is required if the uncertain parameters are dependent.
If nothing is specified,
Uncertainpy by default uses polynomial chaos based on point collocation without the
Rosenblatt transformation.
The results from the uncertainty quantification are automatically saved and
plotted.
Additionally, the results from the uncertainty quantification are returned in
data,
as a Data object (see Data).




Models

The easiest way to create a model is to use a Python function.
We need a Python function that runs a simulation on a
specified model for a given set of model parameters,
and returns the simulation output.
An example outline of a model function is:

def example_model(parameter_1, parameter_2):
    # An algorithm for the model, or a script that runs
    # an external model, using the given input parameters.

    # Returns the model output and model time
    # along with the optional info object.
    return time, values, info





Such a model function can be given as the model argument to the
UncertaintyQuantification class.
Note that sometimes an features or the preprocessing requires that additional
info object is required to be returned from the model.

For more on models see Models.




Parameters

The parameters of a model are defined by two properties,
they must have (i) a name and (ii) either a fixed value or a distribution.
It is important that the name of the parameter is the same as the name given
as the input argument in the model function.
A parameter is considered uncertain if it has a probability distribution,
and the distributions are given as Chaospy distributions.
64 different univariate distributions are defined in Chaospy.
For a list of available distributions and detailed instructions on how to create
probability distributions with Chaospy,
see Section 3.3 in the Chaospy paper [https://www.sciencedirect.com/science/article/pii/S1877750315300119].

parameters is a dictionary with the above information,
the names of the parameters are the keys,
and the fixed values or distributions of the parameters are the values.
As an example, if we have two parameters,
where the first is named name_1 and has a uniform probability
distributions in the interval \([8, 16]\), and the second is named
name_2 and has a fixed value 42, the list become:

import chaospy as cp
parameters = {"name_1": cp.Uniform(8, 16), "name_2": 42}





The parameter argument in UncertaintyQuantification is such a dictionary.

For more on parameters see Parameters.




Features

Features are specific traits of the model output, and Uncertainpy has support
for performing uncertainty quantification and sensitivity analysis of features
of the model output,
in addition to the model output itself.
Features are defined by creating a Python function to calculate a specific
feature from the model output.
The feature function take the items returned by the model as as input arguments,
calculates a specific feature of this model output and returns the results.
quantification on.

The outline for a feature function is:

def example_feature(time, values, info):
    # Calculate the feature using time, values and info.

    # Return the feature times and values.
    return time_feature, values_feature





The features argument to UncertaintyQuantification can
be given as a list of feature functions we want to examine.

For more on features see Features.







          

      

      

    

  

    
      
          
            
  
Examples

This is a collection of examples that shows the use of Uncertainpy for a few
different case studies.



	A cooling coffee cup model

	A cooling coffee cup model with dependent parameters

	The Hodgkin-Huxley model

	A multi-compartment model of a thalamic interneuron implemented in NEURON

	A sparsely connected recurrent network using Nest

	A layer 5 pyramidal neuron implemented with NEURON









          

      

      

    

  

    
      
          
            
  
A cooling coffee cup model

Here we show an example (found in examples/coffee_cup) where we examine the
changes in temperature of a cooling coffee cup that follows Newton’s law of
cooling:


\[\frac{dT(t)}{dt} = -\kappa(T(t) - T_{env})\]

This equation tells how the temperature \(T\) of the coffee cup changes with
time \(t\), when it is in an environment with temperature \(T_{env}\).
\(\kappa\) is a proportionality constant that is characteristic of the system
and regulates how fast the coffee cup radiates heat to the environment. For
simplicity we set the initial temperature to a fixed value,
\(T_0 = 95 ^\circ\text{C}\), and let \(\kappa\) and \(T_{env}\) be
uncertain parameters.
We give the uncertain parameters in the following
distributions:


\[ \begin{align}\begin{aligned}\kappa &= \mathrm{Uniform}(0.025, 0.075),\\T_{env} &= \mathrm{Uniform}(15, 25).\end{aligned}\end{align} \]


Using a function

There are two approaches to creating the model, using a function or a class.
The function method is easiest so we start with that approach.
The complete for this example can be found in
examples/coffee_cup/uq_coffee_function.py.
We start by importing the packages we use:

import uncertainpy as un
import chaospy as cp                       # To create distributions
import numpy as np                         # For the time array
from scipy.integrate import odeint         # To integrate our equation





To create the model we define a Python function coffee_cup that
takes the uncertain parameters kappa and T_env as input arguments.
Inside this function we solve our equation by integrating it using
scipy.integrate.odeint, before we return the results.
The implementation of the model function is:

# Create the coffee cup model function
def coffee_cup(kappa, T_env):
    # Initial temperature and time array
    time = np.linspace(0, 200, 150)            # Minutes
    T_0 = 95                                   # Celsius

    # The equation describing the model
    def f(T, time, kappa, T_env):
        return -kappa*(T - T_env)

    # Solving the equation by integration
    temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

    # Return time and model output
    return time, temperature





We could use this function directly in UncertaintyQuantification,
but we would like to have labels on the axes when plotting.
So we create a Model with the above run function and labels:

# Create a model from the coffee_cup function and add labels
model = un.Model(run=coffee_cup, labels=["Time (min)", "Temperature (C)"])





The next step is to define the uncertain parameters.
We use Chaospy to create the distributions, and create a parameter dictionary:

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameter dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}





We can now calculate the uncertainty and sensitivity using polynomial chaos
expansions with point collocation,
which is the default option of quantify.
We set the seed to easier be able to reproduce the result.

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)





The complete code becomes:

import uncertainpy as un
import chaospy as cp                       # To create distributions
import numpy as np                         # For the time array
from scipy.integrate import odeint         # To integrate our equation


# Create the coffee cup model function
def coffee_cup(kappa, T_env):
    # Initial temperature and time array
    time = np.linspace(0, 200, 150)            # Minutes
    T_0 = 95                                   # Celsius

    # The equation describing the model
    def f(T, time, kappa, T_env):
        return -kappa*(T - T_env)

    # Solving the equation by integration
    temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

    # Return time and model output
    return time, temperature


# Create a model from the coffee_cup function and add labels
model = un.Model(run=coffee_cup, labels=["Time (min)", "Temperature (C)"])

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameter dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)








Using a class

The model can also be created as a class instead of using a function.
Most of the code is unchanged.
The complete for this example is in
examples/coffee_cup/uq_coffee_class.py.
We create a class that inherits from Model. To add the
labels we call on the constructor of the parent class and
give it the labels.

# Create the coffee cup model
class CoffeeCup(un.Model):
    # Add labels to the model by calling the constructor of the parent un.Model
    def __init__(self):
        super(CoffeeCup, self).__init__(labels=["Time (s)", "Temperature (C)"])





We can then implement the run method:

    # Define the run method
    def run(self, kappa, T_env):
        # Initial temperature and time array
        time = np.linspace(0, 200, 150)            # Minutes
        T_0 = 95                                   # Celsius

        # The equation describing the model
        def f(T, time, kappa, T_env):
            return -kappa*(T - T_env)

        # Solving the equation by integration
        temperature = odeint(f, T_0, time, args=(kappa, T_env))[:, 0]

        # Return time and model output
        return time, temperature





Now, instead of creating a model from a model function, we initialize our
CoffeeCup model:

# Initialize the model
model = CoffeeCup()





While the rest is unchanged:

# Create the distributions
kappa_dist = cp.Uniform(0.025, 0.075)
T_env_dist = cp.Uniform(15, 25)

# Define the parameters dictionary
parameters = {"kappa": kappa_dist, "T_env": T_env_dist}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)











          

      

      

    

  

    
      
          
            
  
A cooling coffee cup model with dependent parameters

Here we show an example (found in
examples/coffee_cup_dependent/uq_coffee_dependent_function.py)
where we examine a cooling coffee cup model with dependent parameters.
We modify the simple cooling coffee cup model by introducing two auxillary variables
\(\alpha\) and \(\hat{\kappa}\):


\[\kappa = \alpha\hat{\kappa}\]

to get:


\[\frac{dT(t)}{dt} = -\alpha\hat{\kappa}\left(T(t) - T_{env}\right).\]

The auxillary variables are made dependent by requiring that the model should be
identical to the original model.
We assume that \(\alpha\) is an uncertain scaling factor:


\[\alpha = \mathrm{Uniform}(0.5, 1.5),\]

and set:


\[\hat{\kappa} = \frac{\kappa}{\alpha}.\]

Which gives us the following distributions:


\[ \begin{align}\begin{aligned}\alpha &= \mathrm{Uniform}(0.5, 1.5)\\\hat{\kappa} &= \frac{\mathrm{Uniform}(0.025, 0.075)}{\alpha}\\T_{env} &= \mathrm{Uniform}(15, 25).\end{aligned}\end{align} \]

With Chaospy we can create these dependencies using arithmetic operators:

# Create the distributions
T_env_dist = cp.Uniform(15, 25)
alpha_dist = cp.Uniform(0.5, 1.5)
kappa_hat_dist = cp.Uniform(0.025, 0.075)/alpha_dist

# Define the parameters dictionary
parameters = {"alpha": alpha_dist,
              "kappa_hat": kappa_hat_dist,
              "T_env": T_env_dist}





We can use this parameters dictionary directly
when we set up the uncertainty quantification

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)





The Rosenblatt transformation is by default automatically used we have the
parameters that are dependent. We also set the seed to easier be able to reproduce the result.

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification,
# which automatically use the Rosenblatt transformation
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)





The complete code example become:

import uncertainpy as un
import chaospy as cp
import numpy as np
from scipy.integrate import odeint


# Create the coffee cup model function
def coffee_cup_dependent(kappa_hat, T_env, alpha):
    # Initial temperature and time
    time = np.linspace(0, 200, 150)            # Minutes
    T_0 = 95                                   # Celsius

    # The equation describing the model
    def f(T, time, alpha, kappa_hat, T_env):
        return -alpha*kappa_hat*(T - T_env)

    # Solving the equation by integration.
    temperature = odeint(f, T_0, time, args=(alpha, kappa_hat, T_env))[:, 0]

    # Return time and model results
    return time, temperature


# Create a model from the coffee_cup_dependent function and add labels
model = un.Model(coffee_cup_dependent, labels=["Time (s)", "Temperature (C)"])

# Create the distributions
T_env_dist = cp.Uniform(15, 25)
alpha_dist = cp.Uniform(0.5, 1.5)
kappa_hat_dist = cp.Uniform(0.025, 0.075)/alpha_dist

# Define the parameters dictionary
parameters = {"alpha": alpha_dist,
              "kappa_hat": kappa_hat_dist,
              "T_env": T_env_dist}

# We can use the parameters dictionary directly
# when we set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model, parameters=parameters)

# Perform the uncertainty quantification,
# which automatically use the Rosenblatt transformation
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)





In this case,
the distribution we assign to \(\alpha\) does not matter for the end result,
as the distribution for \(\hat{\kappa}\) will be scaled accordingly.
Using the Rosenblatt transformation,
an uncertainty quantification and sensitivity analysis of the
dependent coffee cup model therefore returns the same results as seen in
the simple coffee cup model,
where the role of the original \(\kappa\) is taken over by \(\hat{\kappa}\),
while the sensitivity to the additional parameter \(\alpha\) becomes strictly zero.





          

      

      

    

  

    
      
          
            
  
The Hodgkin-Huxley model

Here we examine the canonical Hodgkin-Huxley model
(Hodgkin and Huxley, 1952 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/pdf/jphysiol01442-0106.pdf]).
An uncertainty analysis of this model has been performed previously
(Valderrama et al., 2015 [https://mathematical-neuroscience.springeropen.com/articles/10.1186/2190-8567-5-3]),
and we here we repeat a part of that study using Uncertainpy.

The here used version of the Hodgkin-Huxley model has 11 parameters:









	Parameter

	Value

	Unit

	Meaning





	\(V_{0}\)

	-10

	mV

	Initial voltage



	\(C_\mathrm{m}\)

	1

	\(\text{F}/\text{cm}^2\)

	Membrane capacitance



	\(\bar{g}_{\mathrm{Na}}\)

	120

	\(\text{mS/cm}^2\)

	Sodium (Na) conductance



	\(\bar{g}_{\mathrm{K}}\)

	36

	\(\text{mS/cm}^2\)

	Potassium (K) conductance



	\(\bar{g}_{\mathrm{I}}\)

	0.3

	\(\text{mS/cm}^2\)

	Leak current conductance



	\(E_\mathrm{Na}\)

	112

	mV

	Sodium equilibrium potential



	\(E_\mathrm{K}\)

	-12

	mV

	Potassium equilibrium potential



	\(E_\mathrm{I}\)

	10.613

	mV

	Leak current equilibrium potential



	\(n_0\)

	0.0011

	
	Initial potassium activation gating variable



	\(m_0\)

	0.0003

	
	Initial sodium activation gating variable



	\(h_0\)

	0.9998

	
	Initial sodium inactivation gating variable






As in the previous study,
we assume each of these parameters have a uniform distribution in the range
\(\pm 10\%\) around their original value.

We use uncertainty quantification and sensitivity analysis to explore how this
parameter uncertainty affect the model output,
i.e., the action potential response of the neural membrane potential \(V_m\)
to an external current injection.
The model was exposed to a continuous external stimulus of \(140 \mu \mathrm{A/cm}^2\)
starting at \(t = 0\),
and we examined the membrane potential in the time window between \(t\) = 5 and 15 ms

As in the cooling coffee cup example,
we implement the Hodgkin-Huxley model as a Python function
(found in /examples/valderrama/valderrama.py):

import uncertainpy as un

import numpy as np
from scipy.integrate import odeint


# External stimulus
def I(time):
    return 140 # micro A/cm**2


def valderrama(V_0=-10,
               C_m=1,
               gbar_Na=120,
               gbar_K=36,
               gbar_L=0.3,
               E_Na=112,
               E_K=-12,
               E_l=10.613,
               m_0=0.0011,
               n_0=0.0003,
               h_0=0.9998):

    # Setup time
    end_time = 15          # ms
    dt = 0.025             # ms
    time = np.arange(0, end_time + dt, dt)

    # K channel
    def alpha_n(V):
        return 0.01*(10 - V)/(np.exp((10 - V)/10.) - 1)


    def beta_n(V):
        return 0.125*np.exp(-V/80.)

    def n_f(n, V):
        return alpha_n(V)*(1 - n) - beta_n(V)*n

    def n_inf(V):
        return alpha_n(V)/(alpha_n(V) + beta_n(V))


    # Na channel (activating)
    def alpha_m(V):
        return 0.1*(25 - V)/(np.exp((25 - V)/10.) - 1)

    def beta_m(V):
        return 4*np.exp(-V/18.)

    def m_f(m, V):
        return alpha_m(V)*(1 - m) - beta_m(V)*m

    def m_inf(V):
        return alpha_m(V)/(alpha_m(V) + beta_m(V))


    # Na channel (inactivating)
    def alpha_h(V):
        return 0.07*np.exp(-V/20.)

    def beta_h(V):
        return 1/(np.exp((30 - V)/10.) + 1)

    def h_f(h, V):
        return alpha_h(V)*(1 - h) - beta_h(V)*h

    def h_inf(V):
        return alpha_h(V)/(alpha_h(V) + beta_h(V))


    def dXdt(X, t):
        V, h, m, n = X

        g_Na = gbar_Na*(m**3)*h
        g_K = gbar_K*(n**4)
        g_l = gbar_L

        dmdt = m_f(m, V)
        dhdt = h_f(h, V)
        dndt = n_f(n, V)

        dVdt = (I(t) - g_Na*(V - E_Na) - g_K*(V - E_K) - g_l*(V - E_l))/C_m

        return [dVdt, dhdt, dmdt, dndt]


    initial_conditions = [V_0, h_0, m_0, n_0]

    X = odeint(dXdt, initial_conditions, time)
    values = X[:, 0]

    # Only return from 5 seconds onwards, as in the Valderrama paper
    values = values[time > 5]
    time = time[time > 5]

    # Add info needed by certain spiking features and efel features
    info = {"stimulus_start": time[0], "stimulus_end": time[-1]}

    return time, values, info





We use this function when we perform the uncertainty quantification and
sensitivity analysis
(found in /examples/valderrama/uq_valderrama.py).
We first initialize our model:

# Initialize the model
model = un.Model(run=valderrama,
                 labels=["Time (ms)", "Membrane potential (mV)"])





Then we create the set of parameters:

# Define a parameter dictionary
parameters = {"V_0": -10,
              "C_m": 1,
              "gbar_Na": 120,
              "gbar_K": 36,
              "gbar_L": 0.3,
              "m_0": 0.0011,
              "n_0": 0.0003,
              "h_0": 0.9998,
              "E_Na": 112,
              "E_K": -12,
              "E_l": 10.613}

# Create the parameters
parameters = un.Parameters(parameters)





We use set_all_distributions() and
uniform() to give all parameters a uniform
distribution in the range \(\pm 10\%\) around their fixed value.

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))





set_all_distributions sets the distribution of all parameters.
If it receives a function as input,
it gives that function the fixed value of each parameter,
and expects to receive Chaospy functions.
uniform is a closure.
It takes interval as input and returns a function which takes the
fixed_value of each parameter as input and returns a Chaospy distribution with this
interval around the fixed_value.
Ultimately the distribution of each parameter is set to interval around their
fixed_value:

cp.Uniform(fixed_value - abs(interval/2.*fixed_value),
           fixed_value + abs(interval/2.*fixed_value)).





We can now use polynomial chaos expansions with point collocation to calculate the
uncertainty and sensitivity of the model.
We also set the seed to easier be able to reproduce the result.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)





The complete code for the uncertainty quantification and sensitivity becomes:

import uncertainpy as un
import chaospy as cp

from valderrama import valderrama

# Initialize the model
model = un.Model(run=valderrama,
                 labels=["Time (ms)", "Membrane potential (mV)"])

# Define a parameter dictionary
parameters = {"V_0": -10,
              "C_m": 1,
              "gbar_Na": 120,
              "gbar_K": 36,
              "gbar_L": 0.3,
              "m_0": 0.0011,
              "n_0": 0.0003,
              "h_0": 0.9998,
              "E_Na": 112,
              "E_K": -12,
              "E_l": 10.613}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)









          

      

      

    

  

    
      
          
            
  
A multi-compartment model of a thalamic interneuron implemented in NEURON

In this example we illustrate how Uncertainpy can be used on models implemented
in NEURON [https://www.neuron.yale.edu/neuron/].
For this example, we select a previously published model of an interneuron in
the dorsal lateral geniculate nucleus Halnes et al., 2011 [http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002160].
Since the model is in implemented in NEURON,
the original model can be used directly with Uncertainpy with the use of
NeuronModel.
The code for this case study is found in
/examples/interneuron/uq_interneuron.py.
To be able to run this example you require both the NEURON simulator,
as well as the interneuron model saved in the folder /interneuron_model/.

In the original modeling study,
a set of 7 parameters were tuned manually through a series of trials and
errors until the interneuron model obtained the desired response characteristics.
The final parameter set is:










	Parameter

	Value

	Unit

	Neuron variable

	Meaning





	\(g_{\mathrm{Na}}\)

	0.09

	\(\text{S/cm}^2\)

	gna

	Max \(\text{Na}^+\)-conductance in soma



	\(g_{\mathrm{Kdr}}\)

	0.37

	\(\text{S/cm}^2\)

	gkdr

	Max direct rectifying \(\text{K}^+\)-conductance in soma



	\(g_{\mathrm{CaT}}\)

	1.17e-5

	\(\text{S/cm}^2\)

	gcat

	Max T-type \(\text{Ca}^{2+}\)-conductance in soma



	\(g_{\mathrm{CaL}}\)

	9e-4

	\(\text{S/cm}^2\)

	gcal

	Max L-type \(\text{Ca}^{2+}\)-conductance in soma



	\(g_{\mathrm{h}}\)

	1.1e-4

	\(\text{S/cm}^2\)

	ghbar

	Max conductance of a non-specific hyperpolarization activated cation channel in soma



	\(g_{\mathrm{AHP}}\)

	6.4e-5

	\(\text{S/cm}^2\)

	gahp

	Max afterhyperpolarizing \(\text{K}^+\)-conductance in soma



	\(g_{\mathrm{CAN}}\)

	2e-8

	\(\text{S/cm}^2\)

	gcanbar

	Max conductance of a \(\text{Ca}^{2+}\)-activated non-specific cation channel in soma






To perform an uncertainty quantification and sensitivity analysis of this model,
we assume each of these 7 parameters have a uniform uncertainty distribution
in the interval \(\pm 10\%\) around their original value.
We create these parameters similar to how we did in the Hodgkin-Huxley example:

# Define a parameter list
parameters= {"gna": 0.09,
             "gkdr": 0.37,
             "gcat": 1.17e-5,
             "gcal": 0.0009,
             "ghbar": 0.00011,
             "gahp": 6.4e-5,
             "gcanbar": 2e-8}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))





A point-to-point comparison of voltage traces is often uninformative,
and we therefore want to perform a feature based analysis of the model.
Since we examine a spiking neuron model,
we choose the features in SpikingFeatures:

# Initialize the features
features = un.SpikingFeatures(features_to_run="all")





We study the response of the interneuron to a somatic current injection
between \(1000 \text{ ms} < t < 1900 \text{ ms}\).
SpikingFeatures needs to know the start and end time of this
stimulus to be able to calculate certain features.
They are specified through the stimulus_start and
stimulus_end arguments when initializing NeuronModel.
Additionally, the interneuron model uses adaptive time steps,
meaning we have to set interpolate=True.
In this way we tell Uncertainpy to perform an interpolation to get the
output on a regular form before performing the analysis:
We also give the path to the folder where
the neuron model is stored with path="interneuron_model/".
NeuronModel loads the NEURON model from mosinit.hoc,
sets the parameters of the model,
evaluates the model and returns the somatic membrane potential of the neuron,
(the voltage of the section named "soma").
NeuronModel therefore does not require a model function.

# Initialize the model with the start and end time of the stimulus
model = un.NeuronModel(path="interneuron_model/", interpolate=True,
                       stimulus_start=1000, stimulus_end=1900)





We set up the problem, adding our features before we use polynomial chaos
expansion with point collocation to compute the statistical metrics for
the model output and all features.
We also set the seed to easier be able to reproduce the result.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters,
                                  features=features)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)





The complete code becomes:

import uncertainpy as un

# Define a parameter list
parameters= {"gna": 0.09,
             "gkdr": 0.37,
             "gcat": 1.17e-5,
             "gcal": 0.0009,
             "ghbar": 0.00011,
             "gahp": 6.4e-5,
             "gcanbar": 2e-8}

# Create the parameters
parameters = un.Parameters(parameters)

# Set all parameters to have a uniform distribution
# within a 20% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.2))

# Initialize the features
features = un.SpikingFeatures(features_to_run="all")

# Initialize the model with the start and end time of the stimulus
model = un.NeuronModel(path="interneuron_model/", interpolate=True,
                       stimulus_start=1000, stimulus_end=1900)

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters,
                                  features=features)
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(seed=10)









          

      

      

    

  

    
      
          
            
  
A sparsely connected recurrent network using Nest

In the last case study,
we use Uncertainpy to perform a feature based analysis of the sparsely
connected recurrent network by Brunel (2000) [https://web.stanford.edu/group/brainsinsilicon/documents/BrunelSparselyConnectedNets.pdf].
We implement the Brunel network using NEST [http://www.nest-simulator.org/] inside a Python function,
and create \(10000\) inhibitory and \(2500\) excitatory neurons.
We record the output from \(20\) of the excitatory neurons,
and simulate the network for \(1000\) ms.
This is the values used to create the results in the Uncertainpy paper.
If you want to just test the network, we recommend reducing the model to
\(2000\) inhibitory and \(500\) excitatory neurons,
and only simulate the network for \(100\) ms.
To be able to run this example you require NEST to be anle to run the model and
elephant, neo, and quantities to be able to use the network features.

We want to use NestModel to create our model.
NestModel requires the model function to be specified through
the run argument, unlike NeuronModel.
The NEST model function has the same requirements as a regular model function,
except it is restricted to return only two objects:
the final simulation time (simulation_end),
and a list of spike times for each neuron in the network (spiketrains).
NestModel then postproccess this result for us to a regular result.
The final uncertainty quantification of a NEST network therefore predicts the
probability for a spike to occur at any specific time point in the simulation.
We implement the Brunel network as such a function
(found in /examples/brunel/brunel.py):

import nest

def brunel_network(eta=2, g=2, delay=1.5, J=0.1):
    """
    A sparsely connected recurrent network (Brunel).

    Brunel N, Dynamics of Sparsely Connected Networks of Excitatory and
    Inhibitory Spiking Neurons, Journal of Computational Neuroscience 8,
    183-208 (2000).

    Parameters
    ----------
    eta : {int, float}, optional
        External rate relative to threshold rate. Default is 2.
    g : {int, float}, optional
        Ratio inhibitory weight/excitatory weight. Default is 5.
    delay : {int, float}, optional
        Synaptic delay in ms. Default is 1.5.
    J : {int, float}, optional
        Amplitude of excitatory postsynaptic current. Default is 0.1

    Notes
    -----
    Brunel N, Dynamics of Sparsely Connected Networks of Excitatory and
    Inhibitory Spiking Neurons, Journal of Computational Neuroscience 8,
    183-208 (2000).
    """
    # Network parameters
    N_rec = 20             # Record from 20 neurons
    simulation_end = 1000  # Simulation time

    tau_m = 20.0           # Time constant of membrane potential in ms
    V_th = 20.0
    N_E = 10000            # Number of excitatory neurons
    N_I = 2500             # Number of inhibitory neurons
    N_neurons = N_E + N_I  # Number of neurons in total
    C_E = int(N_E/10)      # Number of excitatory synapses per neuron
    C_I = int(N_I/10)      # Number of inhibitory synapses per neuron
    J_I = -g*J             # Amplitude of inhibitory postsynaptic current
    cutoff = 100           # Cutoff to avoid transient effects, in ms

    nu_ex = eta*V_th/(J*C_E*tau_m)
    p_rate = 1000.0*nu_ex*C_E

    nest.ResetKernel()

    # Configure kernel
    nest.SetKernelStatus({"grng_seed": 10})

    nest.SetDefaults('iaf_psc_delta',
                     {'C_m': 1.0,
                      'tau_m': tau_m,
                      't_ref': 2.0,
                      'E_L': 0.0,
                      'V_th': V_th,
                      'V_reset': 10.0})

    # Create neurons
    nodes   = nest.Create('iaf_psc_delta', N_neurons)
    nodes_E = nodes[:N_E]
    nodes_I = nodes[N_E:]

    noise = nest.Create('poisson_generator',1,{'rate': p_rate})

    spikes = nest.Create('spike_detector',2,
                         [{'label': 'brunel-py-ex'},
                          {'label': 'brunel-py-in'}])
    spikes_E = spikes[:1]
    spikes_I = spikes[1:]


    # Connect neurons to each other
    nest.CopyModel('static_synapse_hom_w', 'excitatory',
                   {'weight':J, 'delay':delay})
    nest.Connect(nodes_E, nodes,
                 {'rule': 'fixed_indegree', 'indegree': C_E},
                 'excitatory')

    nest.CopyModel('static_synapse_hom_w', 'inhibitory',
                   {'weight': J_I, 'delay': delay})
    nest.Connect(nodes_I, nodes,
                {'rule': 'fixed_indegree', 'indegree': C_I},
                 'inhibitory')



    # Connect poisson generator to all nodes
    nest.Connect(noise, nodes, syn_spec='excitatory')

    nest.Connect(nodes_E[:N_rec], spikes_E)
    nest.Connect(nodes_I[:N_rec], spikes_I)


    # Run the simulation
    nest.Simulate(simulation_end)


    events_E = nest.GetStatus(spikes_E, 'events')[0]
    events_I = nest.GetStatus(spikes_I, 'events')[0]


    # Excitatory spike trains
    # Makes sure the spiketrain is added even if there are no results
    # to get a regular result
    spiketrains = []
    for sender in nodes_E[:N_rec]:
        spiketrain = events_E["times"][events_E["senders"] == sender]
        spiketrain = spiketrain[spiketrain > cutoff] - cutoff
        spiketrains.append(spiketrain)

    simulation_end -= cutoff

    return simulation_end, spiketrains







And use it to create our model (example found in
/examples/brunel/uq_brunel.py):
We set ignore=True since we are not interested in
the model result itself.
This is recommended for NEST models as long as you do not
need the model results, since the uncertainty calculations for the
for the model results require much time and memory.

# Create a Nest model from the brunel network function
# We set ``ignore=True`` since we are not interested in
# the model result itself.
# This is recommended for NEST models as long as you do not
# need the model results, since the uncertainty calculations for the
# for the model results require much time and memory.
model = un.NestModel(run=brunel_network, ignore=True)





The Brunel model has four uncertain parameters:


	the external rate (\(\nu_\mathrm{ext}\)) relative to threshold rate
(\(\nu_\mathrm{thr}\)) given as \(\eta = \nu_\mathrm{ext}/\nu_\mathrm{thr}\),


	the relative strength of the inhibitory synapses \(g\),


	the synaptic delay \(D\), and


	the amplitude of excitatory postsynaptic current \(J_e\).




Depending on the parameterizations of the model,
the Brunel network may be in several different activity states.
For the current example,
we limit our analysis to two of these states.
We create two sets of parameters, one for each of two states,
and assume the parameter uncertainties are characterized by uniform probability
distributions within the ranges below:










	Parameter

	Range SR

	Range AI

	Variable

	Meaning





	\(\eta\)

	\([1.5, 3.5]\)

	\([1.5, 3.5]\)

	eta

	External rate relative to threshold rate



	\(g\)

	\([1, 3]\)

	\([5, 8]\)

	g

	Relative strength of inhibitory synapses



	\(D\)

	\([1.5, 3]\)

	\([1.5, 3]\)

	delay

	Synaptic delay (ms)



	\(J_e\)

	\([0.05, 0.15]\)

	\([0.05, 0.15]\)

	J_e

	Amplitude excitatory postsynaptic current (mV)






These ranges correspond to the synchronous regular (SR) state,
where the neurons are almost completely synchronized,
and the asynchronous irregular (AI) state,
where the neurons fire individually at low rates.
We create two sets of parameters, one for each state:


# Parametes for the synchronous regular (SR) state
parameters = {"eta": cp.Uniform(1.5, 3.5),
              "g": cp.Uniform(1, 3),
              "delay": cp.Uniform(1.5, 3)}
parameters_SR = un.Parameters(parameters)

# Parameter for the asynchronous irregular (AI) state
parameters = {"eta": cp.Uniform(1.5, 2.2),
              "g": cp.Uniform(5, 8),
              "delay": cp.Uniform(1.5, 3)}
parameters_AI = un.Parameters(parameters)






We use the features in NetworkFeatures to
examine features of the Brunel network.

features = un.NetworkFeatures()






We set up the problems with the SR parameter set and use polynomial chaos with
point collocation to perform the uncertainty quantification and sensitivity
analysis.
We specify a filename for the data, and a folder where to save the figures, to
keep the results from the AI and SR state separated.
We also set the seed to easier be able to reproduce the result.

UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters_SR,
                                  features=features)

# Perform uncertainty quantification
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
UQ.quantify(figure_folder="figures_brunel_SR",
            filename="brunel_SR",
            seed=10)






We then change the parameters, and perform the uncertainty quantification and
sensitivity analysis for the new set of parameters,
again specifying a filename and figure folder.

# Change the set of parameters
UQ.parameters = parameters_AI

# Perform uncertainty quantification on the new parameter set
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(figure_folder="figures_brunel_AI",
                   filename="brunel_AI",
                   seed=10)





The complete code is:

import uncertainpy as un
import chaospy as cp

from brunel import brunel_network

# Create a Nest model from the brunel network function
# We set ``ignore=True`` since we are not interested in
# the model result itself.
# This is recommended for NEST models as long as you do not
# need the model results, since the uncertainty calculations for the
# for the model results require much time and memory.
model = un.NestModel(run=brunel_network, ignore=True)


# Parametes for the synchronous regular (SR) state
parameters = {"eta": cp.Uniform(1.5, 3.5),
              "g": cp.Uniform(1, 3),
              "delay": cp.Uniform(1.5, 3)}
parameters_SR = un.Parameters(parameters)

# Parameter for the asynchronous irregular (AI) state
parameters = {"eta": cp.Uniform(1.5, 2.2),
              "g": cp.Uniform(5, 8),
              "delay": cp.Uniform(1.5, 3)}
parameters_AI = un.Parameters(parameters)

# Initialize network features
features = un.NetworkFeatures()

# Set up the problem
UQ = un.UncertaintyQuantification(model,
                                  parameters=parameters_SR,
                                  features=features)

# Perform uncertainty quantification
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
UQ.quantify(figure_folder="figures_brunel_SR",
            filename="brunel_SR",
            seed=10)


# Change the set of parameters
UQ.parameters = parameters_AI

# Perform uncertainty quantification on the new parameter set
# and save the data and plots under their own name
# We set the seed to easier be able to reproduce the result
data = UQ.quantify(figure_folder="figures_brunel_AI",
                   filename="brunel_AI",
                   seed=10)









          

      

      

    

  

    
      
          
            
  
A layer 5 pyramidal neuron implemented with NEURON

In this example we illustrate how we can subclass a NeuronModel
to customize the methods.
We select a set of reduced models of layer 5 pyramidal neurons (Bahl et al., 2012 [https://www.sciencedirect.com/science/article/pii/S016502701200129X?via%3Dihub]).
The code for this example is found in
/examples/bahl/uq_bahl.py.
To be able to run this example you require both the NEURON [https://www.neuron.yale.edu/neuron/] simulator,
as well as the layer 5 pyramidal neuron model saved in the folder /bahl_model/.

Since the model is implemented in NEURON, we use the NeuronModel.
The problem is that this model require us to recalculate certain properties of
the model after the parameters have been set.
We therefore have to make change to the NeuronModel class so we recalculate
these properties.
The standard run() method implemented in
NeuronModel calls
set_parameters() to set the parameters.
We therefore only need to change this method in the NeuronModel.
First we subclass NeuronModel. For ease of use, we hardcode in the path to
the Bahl model.

# Subclassing NeuronModel
class NeuronModelBahl(un.NeuronModel):
    def __init__(self, stimulus_start=None, stimulus_end=None):
        # Hardcode the path of the Bahl neuron model
        super(NeuronModelBahl, self).__init__(interpolate=True,
                                              path="bahl_model",
                                              stimulus_start=stimulus_start,
                                              stimulus_end=stimulus_end)





We then implement a new set_parameters method, that recalculates the required
properties after the parameters have been set.

    # Reimplement the set_parameters method used by run
    def set_parameters(self, parameters):
        for parameter in parameters:
            self.h(parameter + " = " + str(parameters[parameter]))

        # These commands must be added for this specific
        # model to recalculate the parameters after they have been set
        self.h("recalculate_passive_properties()")
        self.h("recalculate_channel_densities()")





Now we can initialize our new model.

# Initialize the model with the start and end time of the stimulus
model = NeuronModelBahl(stimulus_start=100, stimulus_end=600)





We can then create the uncertain parameters, which we here set to be "e_pas"
and "apical Ra".
Here we do not create a Parameter object,
but use the parameter list directly, to show that this option exists.

# Define a parameter list and use it directly
parameters = {"e_pas": cp.Uniform(-60, -85),
              "apical Ra": cp.Uniform(150, 300)}





The we use SpikingFeatures.

# Initialize the features
features = un.SpikingFeatures()





Lastly we set up and perform the uncertainty quantification and
sensitivity analysis.

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model,
                                  parameters=parameters,
                                  features=features)
data = UQ.quantify()





The complete code becomes:

import uncertainpy as un
import chaospy as cp

# Subclassing NeuronModel
class NeuronModelBahl(un.NeuronModel):
    def __init__(self, stimulus_start=None, stimulus_end=None):
        # Hardcode the path of the Bahl neuron model
        super(NeuronModelBahl, self).__init__(interpolate=True,
                                              path="bahl_model",
                                              stimulus_start=stimulus_start,
                                              stimulus_end=stimulus_end)

    # Reimplement the set_parameters method used by run
    def set_parameters(self, parameters):
        for parameter in parameters:
            self.h(parameter + " = " + str(parameters[parameter]))

        # These commands must be added for this specific
        # model to recalculate the parameters after they have been set
        self.h("recalculate_passive_properties()")
        self.h("recalculate_channel_densities()")


# Initialize the model with the start and end time of the stimulus
model = NeuronModelBahl(stimulus_start=100, stimulus_end=600)

# Define a parameter list and use it directly
parameters = {"e_pas": cp.Uniform(-60, -85),
              "apical Ra": cp.Uniform(150, 300)}

# Initialize the features
features = un.SpikingFeatures()

# Perform the uncertainty quantification
UQ = un.UncertaintyQuantification(model=model,
                                  parameters=parameters,
                                  features=features)
data = UQ.quantify()









          

      

      

    

  

    
      
          
            
  
Frequently asked questions

Here is a collection of frequently asked questions.


Is Uncertainpy usable with multiple model outputs?

Yes, however it does unfortunately not have direct support for this.
Uncertainpy by default only performs an uncertainty quantification of the first
model output returned.
But you can return the additional model outputs in the
info dictionary,
and then define new features that extract each model output from the info
dictionary, see the code example in Multiple model outputs.







          

      

      

    

  

    
      
          
            
  
UncertaintyQuantification

The uncertainpy.UncertaintyQuantification class is used to define the problem,
perform the uncertainty quantification and sensitivity analysis,
and save and visualize the results.
UncertaintyQuantification combines the three main components required to
perform an uncertainty quantification and sensitivity analysis:



	The model we want to examine.


	The parameters of the model.


	Specifications of features in the model output.







The model and parameters are required components,
while the feature specifications are optional.

Among others, UncertaintyQuantification takes the arguments:

UQ = un.UncertaintyQuantification(
        model=Model(...),                        # Required
        parameters=Parameters(...),              # Required
        features=Features(...)                   # Optional
)





The arguments are given as instances of their corresponding Uncertainpy classes
(Models, Parameters, and Features).

After the problem is set up,
an uncertainty quantification and sensitivity analysis can be performed by using the
uncertainpy.UncertaintyQuantification.quantify() method.
Among others, quantify takes the optional arguments:

data = UQ.quantify(
    method="pc"|"mc",
    pc_method="collocation"|"spectral",
    rosenblatt=False|True
)





The method argument allows the user to choose whether Uncertainpy
should use polynomial chaos expansions ("pc")
or quasi-Monte Carlo ("mc") methods to
calculate the relevant statistical metrics.
If polynomial chaos expansions are chosen,
pc_method further specifies whether point collocation
("collocation") or spectral projection ("spectral")
methods are used to calculate the expansion coefficients.
Finally,
rosenblatt (False or True) determines if the
Rosenblatt transformation should be used.
If nothing is specified,
Uncertainpy by default uses polynomial chaos expansions based on point
collocation without the
Rosenblatt transformation.

The results from the uncertainty quantification are returned in data,
as a Data object(see Data).
The results are also automatically saved in a folder named data,
and figures automatically plotted and saved in a folder named figures,
both in the current directory.
The returned data object is therefore not necessary to use.

Polynomial chaos expansions are recommended as long as the number of uncertain
parameters is small (typically \(>20\)),
as polynomial chaos expansions in these cases are much faster than
quasi-Monte Carlo methods.
Additionally,
sensitivity analysis is currently not yet available for studies based on
the quasi-Monte Carlo method.
Which of the polynomial chaos expansions methods to choose is problem dependent,
but in general the pseudo-spectral method is faster than point collocation,
but has lower stability.
We therefore generally recommend the point collocation method.

We note that there is no guarantee each set of sampled parameters produces
a valid model or feature output.
For example,
a feature such as the spike width will not be defined in a model evaluation that
produces no spikes.
In such cases,
Uncertainpy gives a warning which includes the number of runs that
failed to return a valid output,
and performs the uncertainty quantification and sensitivity analysis
using the reduced set of valid runs.
Point collocation (as well as the quasi-Monte Carlo method) are robust towards
missing values as long as the number of results remaining is high enough,
another reason the point collocation method is recommend.
However, if a large fraction of the simulations fail,
the user could consider redefining the problem
(e.g., by using narrower parameter distributions).


API Reference


	
class uncertainpy.UncertaintyQuantification(model, parameters, features=None, uncertainty_calculations=None, create_PCE_custom=None, custom_uncertainty_quantification=None, CPUs=u'max', logger_level=u'info', logger_filename=u'uncertainpy.log', backend=u'auto')[source]

	Perform an uncertainty quantification and sensitivity analysis of a model
and features of the model.

It implements both quasi-Monte Carlo methods and polynomial chaos expansions
using either point collocation or the pseudo-spectral method. Both of the
polynomial chaos expansion methods have support for the rosenblatt
transformation to handle dependent input parameters.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	parameters ({None, Parameters instance, list of Parameter instances, list with [[name, value, distribution], …]}) – Either None, a Parameters instance or a list of the parameters that should be created.
The two lists are similar to the arguments sent to Parameters.
Default is None.


	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.
Default is None.


	uncertainty_calculations (UncertaintyCalculations or UncertaintyCalculations subclass instance, optional) – An UncertaintyCalculations class or subclass that implements (custom)
uncertainty quantification and sensitivity analysis methods.


	create_PCE_custom (callable, optional) – A custom method for calculating the polynomial chaos approximation.
For the requirements of the function see
UncertaintyCalculations.create_PCE_custom. Overwrites existing
create_PCE_custom method.
Default is None.


	custom_uncertainty_quantification (callable, optional) – A custom method for calculating uncertainties.
For the requirements of the function see
UncertaintyCalculations.custom_uncertainty_quantification.
Overwrites existing custom_uncertainty_quantification method.
Default is None.


	CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the model and features.
If None, no multiprocessing is used.
If “max”, the maximum number of CPUs on the computer
(multiprocess.cpu_count()) is used.
Default is “max”.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed
Default logger level is “info”.


	logger_filename (str) – Name of the logfile. If None, no logging to file is performed. Default is
“uncertainpy.log”.


	backend ({“auto”, “hdf5”, “exdir”}, optional) – The fileformat used to save and load data to/from file. “auto” assumes the
filenames ends with either “.h5” for HDF5 files or “.exdir” for Exdir files.
If unknown fileextension defaults to saving data as HDF5 files. “hdf5” saves
and loads files from HDF5 files. “exdir” saves and loads files from
Exdir files. Default is “auto”.






	Variables

	
	model (Model or Model subclass) – The model to perform uncertainty quantification on.


	parameters (Parameters) – The uncertain parameters.


	features (Features or Features subclass) – The features of the model to perform uncertainty quantification on.


	uncertainty_calculations (UncertaintyCalculations or UncertaintyCalculations subclass) – UncertaintyCalculations object responsible for performing the uncertainty
quantification calculations.


	data (Data) – A data object that contains the results from the uncertainty quantification.
Contains all model and feature evaluations, as well as all calculated
statistical metrics.






	Raises

	ValueError – If unsupported backend is chosen.






See also

uncertainpy.features, uncertainpy.Parameter, uncertainpy.Parameters, uncertainpy.models, uncertainpy.core.UncertaintyCalculations


	uncertainpy.core.UncertaintyCalculations.create_PCE_custom

	Requirements for create_PCE_custom



	uncertainpy.models.Model.run

	Requirements for the model run function.








	
custom_uncertainty_quantification(plot=u'condensed_first', figure_folder=u'figures', figureformat=u'.png', save=True, data_folder=u'data', filename=None, **custom_kwargs)[source]

	Perform a custom  uncertainty quantification and sensitivity analysis,
implemented by the user.


	Parameters

	
	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data.
Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.


	**custom_kwargs – Any number of arguments for the custom uncertainty quantification.






	Raises

	NotImplementedError – If the custom uncertainty quantification method have not been
implemented.





Notes

For details on how to implement the custom uncertainty quantification
method see UncertaintyCalculations.custom_uncertainty_quantification.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.


See also

uncertainpy.plotting.PlotUncertainty(), uncertainpy.Parameters()


	uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification()

	Requirements for custom_uncertainty_quantification












	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
load(filename)[source]

	Load data from disk.


	Parameters

	filename (str) – Name of the stored data file.






See also


	uncertainpy.Data()

	Data class












	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel








	
monte_carlo(uncertain_parameters=None, nr_samples=10000, seed=None, plot=u'condensed_first', figure_folder=u'figures', figureformat=u'.png', save=True, data_folder=u'data', filename=None)[source]

	Perform an uncertainty quantification using the quasi-Monte Carlo method.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when performing the uncertainty
quantification. If None, all uncertain parameters are used.
Default is None.


	nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling.
nr_samples is used for the uncertainty
quantification and (nr_samples/2)*(nr_uncertain_parameters + 2)
samples is used for the sensitivity analysis. Default nr_samples
is 10**4.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data.
Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.






	Returns

	data – A data object that contains the results from the uncertainty quantification.
Contains all model and feature evaluations, as well as all calculated
statistical metrics.



	Return type

	Data



	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

Which method to choose is problem dependent, but as long as the number of
uncertain parameters is low (less than around 20 uncertain parameters)
polynomial chaos methods are much faster than Monte Carlo methods.
Above this Monte Carlo methods are the best.

In the quasi-Monte Carlo method we quasi-randomly draw
(nr_samples/2)*(nr_uncertain_parameters + 2)
(nr_samples=10**4 by default) parameter samples using Saltelli’s
sampling scheme. We require this number of samples to be able to calculate
the Sobol indices. We evaluate the model for each of these parameter
samples and calculate the features from each of the model results. This
step is performed in parallel to speed up the calculations. Then we use
nr_samples of the model and feature results to calculate the
mean, variance, and 5th and 95th percentile for the model and each
feature. Lastly, we use all calculated model and each feature results to
calculate the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.

Sensitivity analysis is currently not yet available for the quasi-Monte
Carlo method.


See also

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.PlotUncertainty()


	uncertainpy.core.UncertaintyCalculations.monte_carlo()

	Uncertainty quantification using quasi-Monte Carlo methods












	
monte_carlo_single(uncertain_parameters=None, nr_samples=10000, seed=None, plot=u'condensed_first', save=True, data_folder=u'data', figure_folder=u'figures', figureformat=u'.png', filename=None)[source]

	Perform an uncertainty quantification for a single parameter at the time
using the quasi-Monte Carlo method.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when performing the uncertainty
quantification. If None, all uncertain parameters are used.
Default is None.


	nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling.
nr_samples is used for the uncertainty
quantification and (nr_samples/2)*(nr_uncertain_parameters + 2)
samples is used for the sensitivity analysis. Default nr_samples
is 10**4.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data.
Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.






	Returns

	data_dict – A dictionary that contains the data objects for each single parameter
calculation.



	Return type

	dict



	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

Which method to choose is problem dependent, but as long as the number of
uncertain parameters is low (less than around 20 uncertain parameters)
polynomial chaos methods are much faster than Monte Carlo methods.
Above this Monte Carlo methods are the best.

In the quasi-Monte Carlo method we quasi-randomly draw
(nr_samples/2)*(nr_uncertain_parameters + 2)
(nr_samples=10**4 by default) parameter samples using Saltelli’s
sampling scheme. We require this number of samples to be able to calculate
the Sobol indices. We evaluate the model for each of these parameter
samples and calculate the features from each of the model results. This
step is performed in parallel to speed up the calculations. Then we use
nr_samples of the model and feature results to calculate the
mean, variance, and 5th and 95th percentile for the model and each
feature. Lastly, we use all calculated model and each feature results to
calculate the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.

Sensitivity analysis is currently not yet available for the quasi-Monte
Carlo method.


See also

uncertainpy.Data(), uncertainpy.plotting.PlotUncertainty(), uncertainpy.Parameters()


	uncertainpy.core.UncertaintyCalculations.monte_carlo()

	Uncertainty quantification using quasi-Monte Carlo methods












	
parameters

	Model parameters.


	Parameters

	new_parameters ({None, Parameters instance, list of Parameter instances, list [[name, value, distribution], …]}) – Either None, a Parameters instance or a list of the parameters that should be created.
The two lists are similar to the arguments sent to Parameters.
Default is None.



	Returns

	parameters – Parameters of the model.
If None, no parameters have been set.



	Return type

	{None, Parameters}






See also

uncertainpy.Parameter, uncertainpy.Parameters








	
plot(type=u'condensed_first', folder=u'figures', figureformat=u'.png')[source]

	Create plots for the results of the uncertainty quantification and
sensitivity analysis. self.data must exist and contain the results.


	Parameters

	
	data (Data) – A data object that contains the results from the uncertainty quantification.


	type ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing. Default is “condensed_first”.


	folder (str) – Name of the folder where to save all figures. Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib. Default is “.png”.








Notes

These plots are intended as quick way to get an overview of the results,
and not to create publication ready plots. Custom plots of the data can
easily be created by retrieving the data from the Data class.


See also

uncertainpy.Data(), uncertainpy.plotting.PlotUncertainty()








	
polynomial_chaos(method=u'collocation', rosenblatt=u'auto', uncertain_parameters=None, polynomial_order=4, nr_collocation_nodes=None, quadrature_order=None, nr_pc_mc_samples=10000, allow_incomplete=True, seed=None, plot=u'condensed_first', figure_folder=u'figures', figureformat=u'.png', save=True, data_folder=u'data', filename=None, **custom_kwargs)[source]

	Perform an uncertainty quantification and sensitivity analysis
using polynomial chaos expansions.


	Parameters

	
	method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when creating the polynomial chaos approximation,
if the polynomial chaos method is chosen. “collocation” is the
point collocation method “spectral” is pseudo-spectral projection,
and “custom” is the custom polynomial method.
Default is “collocation”.


	rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used. The Rosenblatt
transformation must be used if the uncertain parameters have
dependent variables. If “auto” the Rosenblatt transformation is used
if there are dependent parameters, and it is not used of the
parameters have independent distributions. Default is “auto”.


	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when performing the uncertainty
quantification. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose, if polynomial chaos with
point collocation is used. If None,
nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method, if polynomial chaos with
pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2.
Default is None.


	nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of the polynomial
chaos approximation, if the polynomial chaos method is chosen.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data.
Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.


	**custom_kwargs – Any number of arguments for the custom polynomial chaos method,
create_PCE_custom.






	Returns

	data – A data object that contains the results from the uncertainty quantification.
Contains all model and feature evaluations, as well as all calculated
statistical metrics.



	Return type

	Data



	Raises

	
	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.


	ValueError – If method not one of “collocation”, “spectral” or “custom”.


	NotImplementedError – If custom pc method is chosen and have not been implemented.








Notes

Which method to choose is problem dependent, but as long as the number of
uncertain parameters is low (less than around 20 uncertain parameters)
polynomial chaos methods are much faster than Monte Carlo methods.
Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point
collocation, but has lower stability. We therefore generally recommend
the point collocation method.

The model and feature do not necessarily give results for each
node. The collocation method are robust towards missing values as long
as the number of results that remain is high enough. The pseudo-spectral
method on the other hand, is sensitive to missing values, so
allow_incomplete should be used with care in that case.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done
with care, and implementing custom methods is only recommended for
experts.


See also

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.PlotUncertainty()


	uncertainpy.core.UncertaintyCalculations.polynomial_chaos()

	Uncertainty quantification using polynomial chaos expansions



	uncertainpy.core.UncertaintyCalculations.create_PCE_custom()

	Requirements for create_PCE_custom












	
polynomial_chaos_single(method=u'collocation', rosenblatt=u'auto', polynomial_order=4, uncertain_parameters=None, nr_collocation_nodes=None, quadrature_order=None, nr_pc_mc_samples=10000, allow_incomplete=True, seed=None, plot=u'condensed_first', figure_folder=u'figures', figureformat=u'.png', save=True, data_folder=u'data', filename=None)[source]

	Perform an uncertainty quantification and sensitivity analysis for a
single parameter at the time using polynomial chaos expansions.


	Parameters

	
	method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when creating the polynomial chaos approximation,
if the polynomial chaos method is chosen. “collocation” is the
point collocation method “spectral” is pseudo-spectral projection,
and “custom” is the custom polynomial method.
Default is “collocation”.


	rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used. The Rosenblatt
transformation must be used if the uncertain parameters have
dependent variables. If “auto” the Rosenblatt transformation is used
if there are dependent parameters, and it is not used of the
parameters have independent distributions. Default is “auto”.


	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to performing the uncertainty
quantification for. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose, if polynomial chaos with
point collocation is used. If None,
nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method, if polynomial chaos with
pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2.
Default is None.


	nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of the polynomial
chaos approximation, if the polynomial chaos method is chosen.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data.
Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.


	**custom_kwargs – Any number of arguments for the custom polynomial chaos method,
create_PCE_custom.






	Returns

	data_dict – A dictionary that contains the data for each single parameter
calculation.



	Return type

	dict



	Raises

	
	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.


	ValueError – If method not one of “collocation”, “spectral” or “custom”.


	NotImplementedError – If custom pc method is chosen and have not been implemented.








Notes

Which method to choose is problem dependent, but as long as the number of
uncertain parameters is low (less than around 20 uncertain parameters)
polynomial chaos methods are much faster than Monte Carlo methods.
Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point
collocation, but has lower stability. We therefore generally recommend
the point collocation method.

The model and feature do not necessarily give results for each
node. The collocation method are robust towards missing values as long
as the number of results that remain is high enough. The pseudo-spectral
method on the other hand, is sensitive to missing values, so
allow_incomplete should be used with care in that case.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done
with care, and implementing custom methods is only recommended for
experts.


See also

uncertainpy.Data(), uncertainpy.Parameters(), uncertainpy.plotting.PlotUncertainty()


	uncertainpy.core.UncertaintyCalculations.polynomial_chaos()

	Uncertainty quantification using polynomial chaos expansions



	uncertainpy.core.UncertaintyCalculations.create_PCE_custom()

	Requirements for create_PCE_custom












	
quantify(method=u'pc', pc_method=u'collocation', rosenblatt=u'auto', uncertain_parameters=None, polynomial_order=4, nr_collocation_nodes=None, quadrature_order=None, nr_pc_mc_samples=10000, nr_mc_samples=10000, allow_incomplete=True, seed=None, single=False, plot=u'condensed_first', figure_folder=u'figures', figureformat=u'.png', save=True, data_folder=u'data', filename=None, **custom_kwargs)[source]

	Perform an uncertainty quantification and sensitivity analysis
using polynomial chaos expansions or quasi-Monte Carlo methods.


	Parameters

	
	method ({“pc”, “mc”, “custom”}, optional) – The method to use when performing the uncertainty quantification and
sensitivity analysis.
“pc” is polynomial chaos method, “mc” is the quasi-Monte Carlo
method and “custom” are custom uncertainty quantification methods.
Default is “pc”.


	pc_method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when creating the polynomial chaos approximation,
if the polynomial chaos method is chosen. “collocation” is the
point collocation method “spectral” is pseudo-spectral projection,
and “custom” is the custom polynomial method.
Default is “collocation”.


	rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used. The Rosenblatt
transformation must be used if the uncertain parameters have
dependent variables. If “auto” the Rosenblatt transformation is used
if there are dependent parameters, and it is not used of the
parameters have independent distributions. Default is “auto”.


	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when performing the uncertainty
quantification. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose, if polynomial chaos with
point collocation is used. If None,
nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method, if polynomial chaos with
pseudo-spectral projection is used. If None,
quadrature_order = polynomial_order + 2.
Default is None.


	nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of the polynomial
chaos approximation, if the polynomial chaos method is chosen.
Default is 10**4.


	nr_mc_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling, if the quasi-Monte
Carlo method is chosen. nr_mc_samples is used for the uncertainty
quantification and (nr_mc_samples/2)*(nr_uncertain_parameters + 2)
samples is used for the sensitivity analysis. Default nr_mc_samples
is 10**4.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	single (bool) – If an uncertainty quantification should be performed with only one
uncertain parameter at the time. Requires that the values of
each parameter is set. Default is False.


	plot ({“condensed_first”, “condensed_total”, “condensed_no_sensitivity”, “all”, “evaluations”, None}, optional) – Type of plots to be created.
“condensed_first” is a subset of the most important plots and
only plots each result once, and contains plots of the first order
Sobol indices. “condensed_total” is similar, but with the
total order Sobol indices, and “condensed_no_sensitivity” is the
same without any Sobol indices plotted. “all” creates every plot.
“evaluations” plots the model and feature evaluations. None plots
nothing.
Default is “condensed_first”.


	figure_folder (str, optional) – Name of the folder where to save all figures.
Default is “figures”.


	figureformat (str) – The figure format to save the plots in. Supports all formats in
matplolib.
Default is “.png”.


	save (bool, optional) – If the data should be saved. Default is True.


	data_folder (str, optional) – Name of the folder where to save the data. Default is “data”.


	filename ({None, str}, optional) – Name of the data file. If None the model name is used.
Default is None.


	**custom_kwargs – Any number of arguments for either the custom polynomial chaos method,
create_PCE_custom, or the custom uncertainty quantification,
custom_uncertainty_quantification.






	Returns

	data – A data object that contains the results from the uncertainty quantification.
Contains all model and feature evaluations, as well as all calculated
statistical metrics. If single = True, then returns a dictionary
that contains the data objects for each single parameter
calculation.



	Return type

	Data, dict containing data objects



	Raises

	
	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.


	ValueError – If method not one of “pc”, “mc” or “custom”.


	ValueError – If pc_method not one of “collocation”, “spectral” or “custom”.


	NotImplementedError – If custom method or custom pc method is chosen and have not been
implemented.








Notes

Which method to choose is problem dependent, but as long as the number of
uncertain parameters is low (less than around 20 uncertain parameters)
polynomial chaos methods are much faster than Monte Carlo methods.
Above this Monte Carlo methods are the best.

For polynomial chaos, the pseudo-spectral method is faster than point
collocation, but has lower stability. We therefore generally recommend
the point collocation method.

The model and feature do not necessarily give results for each
node. The collocation method and quasi-Monte Carlo methods are robust
towards missing values as long as the number of results that remain is
high enough. The pseudo-spectral method on the other hand, is sensitive
to missing values, so allow_incomplete should be used with care in
that case.

In the quasi-Monte Carlo method we quasi-randomly draw
(nr_mc_samples/2)*(nr_uncertain_parameters + 2)
(nr_mc_samples=10**4 by default) parameter samples using Saltelli’s
sampling scheme. We require this number of samples to be able to calculate
the Sobol indices. We evaluate the model for each of these parameter
samples and calculate the features from each of the model results. This
step is performed in parallel to speed up the calculations. Then we use
nr_mc_samples of the model and feature results to calculate the
mean, variance, and 5th and 95th percentile for the model and each
feature. Lastly, we use all calculated model and each feature results to
calculate the Sobol indices using Saltellie’s approach.

The plots created are intended as quick way to get an overview of the
results, and not to create publication ready plots. Custom plots of the
data can easily be created by retrieving the data from the Data class.

Changing the parameters of the polynomial chaos methods should be done
with care, and implementing custom methods is only recommended for
experts.


See also

uncertainpy.Parameters(), uncertainpy.Data(), uncertainpy.plotting.PlotUncertainty()


	uncertainpy.core.UncertaintyCalculations.polynomial_chaos()

	Uncertainty quantification using polynomial chaos expansions



	uncertainpy.core.UncertaintyCalculations.monte_carlo()

	Uncertainty quantification using quasi-Monte Carlo methods



	uncertainpy.core.UncertaintyCalculations.create_PCE_custom()

	Requirements for create_PCE_custom



	uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification()

	Requirements for custom_uncertainty_quantification












	
save(filename, folder=u'data')[source]

	Save data to disk.


	Parameters

	
	filename (str) – Name of the data file.


	folder (str, optional) – The folder to store the data in. Creates the folder if it does not
exist. Default is “/data”.









See also


	uncertainpy.Data()

	Data class












	
uncertainty_calculations

	The class for performing the calculations for the uncertainty
quantification and sensitivity analysis.


	Parameters

	new_uncertainty_calculations (UncertaintyCalculations or UncertaintyCalculations subclass instance) – New UncertaintyCalculations object responsible for performing the uncertainty
quantification calculations.



	Returns

	uncertainty_calculations – UncertaintyCalculations object responsible for performing the uncertainty
quantification calculations.



	Return type

	UncertaintyCalculations or UncertaintyCalculations subclass instance






See also

uncertainpy.core.UncertaintyCalculations

















          

      

      

    

  

    
      
          
            
  
Models

In order to perform the uncertainty quantification and sensitivity
analysis of a model,
Uncertainpy needs to set the parameters of the model,
run the model using those parameters,
and receive the model output.
The main class for models is Model, which is used to create
custom models.
Uncertainpy has built-in support for NEURON and NEST models,
found in the NeuronModel  and NestModel classes
respectively.
Uncertainpy also has support for multiple model outputs through the use of
additional features.
It should be noted that while Uncertainpy is tailored towards neuroscience,
it is not restricted to only neuroscience models.
Uncertainpy can be used on any model that meets the criteria in
this section.



	Model

	NeuronModel

	NestModel

	Multiple model outputs









          

      

      

    

  

    
      
          
            
  
Model

Generally, models are created through the Model class.
Model takes the argument run and the optional arguments
postprocess, adaptive and labels.

model = un.Model(run=example_model,
                 postprocess=example_postprocess,
                 interpolate=True,
                 labels=["xlabel", "ylabel"])





The run argument must be a Python function that runs a
simulation on a specific model for a given set of model parameters,
and returns the simulation output.
We call such a function for a model function.
The postprocess argument is a Python function used to postprocess
the model output if required.
We go into details on the requirements of the postprocess and model
functions below.
interpolate specifies whether the model should be interpolated to a regular
form.
This is required for for example models with adaptive time steps.
For adaptive models,
Uncertainpy automatically interpolates the output to a regular form
(the same number of points for each model evaluation).
Finally, labels allows the user to specify a list of labels to be
used on the axes when plotting the results.


Defining a model function

As explained above, the run argument is a Python function that runs
a simulation on a specific model for a given set of model parameters,
and returns the simulation output.
An example outline of a model function is:

def example_model(parameter_1, parameter_2):
    # An algorithm for the model, or a script that runs
    # an external model, using the given input parameters.

    # Returns the model output and model time
    # along with the optional info object.
    return time, values, info





Such a model function has the following requirements:



	Input.
The model function takes a number of arguments which define the
uncertain parameters of the model.


	Run the model.
The model must then be run using the parameters given as arguments.


	Output.
The model function must return at least two objects,
the model time (or equivalent, if applicable) and model output.
Additionally, any number of optional info objects can be returned.
In Uncertainpy,
we refer to the time object as time,
the model output object as values,
and the remaining objects as info.



	Time (time).
The time can be interpreted as the x-axis of the model.
It is used when interpolating (see below),
and when certain features are calculated.
We can return None if the model has no time
associated with it.


	Model output (values).
The model output must either be regular, or it must be possible to
interpolate or postprocess the output (see Features)
to a regular form.


	Additional info (info).
Some of the methods provided by Uncertainpy,
such as the later defined model postprocessing,
feature preprocessing,
and feature calculations,
require additional information from the model (e.g., the time a
neuron receives an external stimulus).
We recommend to use a
single dictionary as info object,
with key-value pairs for the information,
to make debugging easier.
Uncertainpy always uses a single dictionary as the
info object.
Certain features require that specific keys are present in this
dictionary.














The model itself does not need to be implemented in Python.
Any simulator can be used,
as long as we can control the model parameters and retrieve the simulation
output via Python.
We can as a shortcut pass a model function to the
model argument in UncertaintyQuantification,
instead of first having to create a Model instance.




Defining a postprocess function

The postprocess function is used to postprocess the model output
before it is used in the uncertainty quantification.
Postprocessing does not change the model output sent to the feature
calculations.
This is useful if we need to transform the model output
This is useful if we need to transform the model output to a regular result
for the uncertainty quantification,
but still need to preserve the original model output to reliably
detect the model features.

[image: ../_images/diagram1.png]
This figure illustrates how the objects returned by the model
function are sent to both model postprocess,
and feature preprocess (see Features).
Functions associated with the model are in red while functions
associated with features are in green.

An example outline of the postprocess function is:

def example_postprocess(time, values, info):
    # Postprocess the result to a regular form using time,
    # values, and info returned by the model function.

    # Return the postprocessed model output and time.
    return time_postprocessed, values_postprocessed





The only time postprocessing is required for Uncertainpy to work,
is when the model produces output that can not be interpolated to a regular
form by Uncertainpy.
Postprocessing is for example required for network models that give output in
the form of spike trains, i.e. time values indicating when a given neuron fires.
It should be noted that postprocessing of spike trains is already implemented
in Uncertainpy, in the NestModel.
For most purposes user defined postprocessing will not be necessary.

The requirements for the postprocess function are:



	Input.
postprocess must take the objects returned by the
model function as input arguments.


	Postprocessing.
The model time (time) and output (values) must
be postprocessed to a regular form, or to a form that can be
interpolated to a regular form by Uncertainpy.
If additional information is needed from the model, it can be passed
along in the info object.


	Output.
The postprocess function must return two objects:



	Model time (time_postprocessed).
The first object is the postprocessed time (or equivalent)
of the model.
We can return None if the model has no time.
Note that the automatic interpolation of the postprocessed
time can only be performed if a postprocessed time is returned
(if an interpolation is required).


	Model output (values_postprocessed).
The second object is the postprocessed model output.

















API Reference


	
class uncertainpy.models.Model(run=None, interpolate=False, labels=[], postprocess=None, ignore=False, suppress_graphics=False, logger_level=u'info', **model_kwargs)[source]

	Class for storing the model to perform uncertainty quantification and
sensitivity analysis on.

The run method must either be implemented or set to a
function, and is responsible for running the model.
If you want to calculate features directly from the original model results,
but still need to postprocess the model results to perform the
uncertainty quantification, you can implement the postprocessing in the
postprocess method.


	Parameters

	
	run ({None, callable}, optional) – A function that implements the model. See the run method for
requirements of the function. Default is None.


	interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	labels (list, optional) – A list of label names for the axes when plotting the model.
On the form ["x-axis", "y-axis", "z-axis"], with the number of axes
that is correct for the model output. Default is an empty list.


	postprocess ({None, callable}, optional) – A function that implements the postprocessing of the model.
See the postprocess method for requirements of the function.
Default is None.


	ignore (bool, optional) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. Default is False.


	suppress_graphics (bool, optional) – Suppress all graphics created by the model. Default is False.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed.
Default logger level is “info”.


	**model_kwargs – Any number of arguments passed to the model function when it is run.






	Variables

	
	labels (list) – A list of label names for the axes when plotting the model.
On the form ["x-axis", "y-axis", "z-axis"], with the number of axes
that is correct for the model output.


	interpolate (bool) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	name (str) – Name of the model. Either the name of the class or the name of the
function set as run.


	suppress_graphics (bool) – Suppress all graphics created by the model.


	ignore (bool) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. The model results are still
postprocessed if a postprocessing is implemented. Default is False.









See also

uncertainpy.models.Model.run, uncertainpy.models.Model.postprocess




	
evaluate(**parameters)[source]

	Run the model with parameters and default model_kwargs options,
and validate the result.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the model, either setting them with Python, or
assigning them to the simulator.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – Result of the model. Note that values myst either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.











See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
postprocess

	Postprocessing of the time and results from the model.

No postprocessing is performed, and the direct model results are
currently returned.
If postprocessing is needed it should follow the below format.


	Parameters

	
	*model_result – Variable length argument list. Is the values that run
returns. It contains time and values,
and then any number of optional info values.


	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values the model should return
None or numpy.nan.


	values (array_like) – Result of the model.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – The postprocessed model results, values must either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.










Notes

Perform a postprocessing of the model results before they are sent to
the uncertainty quantification.
The model results must either be regular or be able to be interpolated.
This is because the uncertainty quantification methods
needs results with the same number of points for each set of parameters
to be able to perform the uncertainty quantification.

postprocess is implemented to make
the model results regular, or on a form that can be interpolated.
The results from the postprocessing is not
used to calculate features, and is therefore used if you
want to calculate features directly from the original model results,
but still need to postprocess the model results to perform the
uncertainty quantification.

The requirements for a postprocess function are:


	Input.
postprocess must take the objects returned by the
model function as input arguments.


	Postprocessing.
The model time (time) and output (values) must
be postprocessed to a regular form, or to a form that can be
interpolated to a regular form by Uncertainpy.
If additional information is needed from the model, it can be passed
along in the info object.


	Output.
The postprocess function must return two objects:


	Model time (time_postprocessed).
The first object is the postprocessed time (or equivalent)
of the model.
We can return None if the model has no time.
Note that the automatic interpolation of the postprocessed
time can only be performed if a postprocessed time is returned
(if an interpolation is required).


	Model output (values_postprocessed).
The second object is the postprocessed model output.













	
run

	Run the model and return time and model result.

This method must either be implemented or set to a function and is
responsible for running the model. See Notes for requirements.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the model, either setting them with Python, or
assigning them to the simulator.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – Result of the model. Note that values myst either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.








	Raises

	NotImplementedError – If no run method have been implemented or set to a function.





Notes

The run method must either be implemented or set to a
function. Both options have the following requirements:


	Input.
The model function takes a number of arguments which define the
uncertain parameters of the model.


	Run the model.
The model must then be run using the parameters given as arguments.


	Output.
The model function must return at least two objects,
the model time (or equivalent, if applicable) and model output.
Additionally, any number of optional info objects can be returned.
In Uncertainpy,
we refer to the time object as time,
the model output object as values,
and the remaining objects as info.
Note that while we refer to these objects as time,
values and info in Uncertainpy,
it does not matter what you call the objects returned by
the run function.



	Time (time).
The time can be interpreted as the x-axis of the model.
It is used when interpolating (see below),
and when certain features are calculated.
We can return None if the model has no time
associated with it.


	Model output (values).
The model output must either be regular, or it must be possible to
interpolate or postprocess the output to a regular form.


	Additional info (info).
Some of the methods provided by Uncertainpy,
such as the later defined model postprocessing,
feature preprocessing,
and feature calculations,
require additional information from the model (e.g., the time a
neuron receives an external stimulus).
We recommend to use a
single dictionary as info object,
with key-value pairs for the information,
to make debugging easier.
Uncertainpy always uses a single dictionary as the
info object.
Certain features require that specific keys are present in this
dictionary.











The model does not need to be implemented in Python, you can use any
model/simulator as long as you are able to set the model parameters of
the model from the run method Python and return the results from the
model into the run method.

If you want to calculate features directly from the original model results,
but still need to postprocess the model results to perform the
uncertainty quantification, you can implement the postprocessing in the
postprocess method.


See also

uncertainpy.features


	uncertainpy.features.Features.preprocess

	Preprocessing of model results before feature calculation



	uncertainpy.model.Model.postprocess

	Postprocessing of model result.












	
set_parameters(**parameters)[source]

	Set all named arguments as attributes of the model class.


	Parameters

	**parameters (A number of named arguments (name=value).) – All set as attributes of the class.










	
validate_postprocess(postprocess_result)[source]

	Validate the results from postprocess.

This method ensures that postprocess returns time and values.


	Parameters

	model_results – Any type of postprocessed model results returned by postprocess.



	Raises

	
	ValueError – If the postprocessed model result does not fit the requirements.


	TypeError – If the postprocessed model result does not fit the requirements.








Notes

Tries to verify that time and values are returned from postprocess.
postprocess must return two objects on the format:
return time, values, where:


	
	time_postprocessed{None, numpy.nan, array_like}.

	The first object is the postprocessed time (or equivalent)
of the model.
We can return None if the model has no time.
Note that the automatic interpolation of the postprocessed
time can only be performed if a postprocessed time is returned
(if an interpolation is required).







	
	values_postprocessedarray_like.

	The second object is the postprocessed model output.









Both of these must be regular or on a form that can be interpolated.


See also

uncertainpy.models.Model.postprocess()








	
validate_run(model_result)[source]

	Validate the results from run.

This method ensures run returns time, values, and optional
info objects.


	Parameters

	model_results – Any type of model results returned by run.



	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	time : {None, numpy.nan, array_like}.
Time values of the model. If no time values it should return None or
numpy.nan.


	values : array_like
Result of the model.


	info, optional.
Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.





See also

uncertainpy.models.Model.run()

















          

      

      

    

  

    
      
          
            
  
NeuronModel

NEURON [https://www.neuron.yale.edu/neuron/] is a widely used simulator for multi-compartmental neural models.
Uncertainpy has support for NEURON models through the
NeuronModel class, a subclass of Model.
Among others, NeuronModel takes the arguments:

model = un.NeuronModel(path="path/to/neuron_model",
                    interpolate=True,
                    stimulus_start=1000,               # ms
                    stimulus_end=1900)                 # ms





path is the path to the folder where the NEURON model is saved
(the location of the mosinit.hoc file).
interpolate indicates whether the NEURON model uses adaptive time steps.
stimulus_start and stimulus_end denotes the start and
end time of any stimulus given to the neuron.
NeuronModel loads the NEURON model from mosinit.hoc,
sets the parameters of the model,
evaluates the model and returns the somatic membrane potential of the neuron.
NeuronModel therefore does not require a model function.
An example of a NEURON model analysed with Uncertainpy is found in the
interneuron example.

If changes are needed to the standard NeuronModel,
such as measuring the voltage from other locations than the soma,
or recalculate properties after the parameters have been set,
the Model class with an appropriate model function should be used
instead.
Alternatively,
NeuronModel can be subclassed and
the existing methods customized as required.
An example of the later is shown in /examples/bahl/.


API Reference


	
class uncertainpy.models.NeuronModel(file=u'mosinit.hoc', path=u'', interpolate=True, stimulus_start=None, stimulus_end=None, name=None, ignore=False, run=None, record_from=u'soma', labels=[u'Time (ms)', u'Membrane potential (mV)'], suppress_graphics=True, logger_level=u'info', info={}, **model_kwargs)[source]

	Class for Neuron simulator models.

Loads a Neuron simulation, runs it, and measures the voltage in the soma.


	Parameters

	
	file (str, optional) – Filename of the Neuron model. Default is "mosinit.hoc".


	path (str, optional) – Path to the Neuron model. If None, the file is considered to be in the
current folder. Default is “”.


	stimulus_start ({int, float, None}, optional) – The start time of any stimulus given to the neuron model. This
is added to the info dictionary. If None, no stimulus_start is added to
the info dictionary. Default is None.


	stimulus_end ({int, float, None}, optional) – The end time of any stimulus given to the neuron model. This
is added to the info dictionary. If None, no stimulus_end is added to
the info dictionary. Default is None.


	interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	name ({None, str}, optional) – Name of the model, if None the model gets the name of the current class.
Default is None.


	ignore (bool, optional) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. Default is False.


	run ({None, callable}, optional) – A function that implements the model. See the run method for
requirements of the function. Default is None.


	record_from ({str}, optional) – Name of the section in the NEURON model where voltage should
be recorded.
Default is "soma".


	labels (list, optional) – A list of label names for the axes when plotting the model.
On the form ["x-axis", "y-axis", "z-axis"], with the number of axes
that is correct for the model output.
Default is ["Time (ms)", "Membrane potential (mv)"].


	suppress_graphics (bool, optional) – Suppress all graphics created by the Neuron model. Default is True.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed
Default logger level is “info”.


	info (dict, optional) – Dictionary added to info. Default is an empty dictionary.


	**model_kwargs – Any number of arguments passed to the model function when it is run.






	Variables

	
	run (uncertainpy.models.Model.run) – 


	labels (list) – A list of label names for the axes when plotting the model.
On the form ["x-axis", "y-axis", "z-axis"], with the number of axes
that is correct for the model output.


	interpolate (bool) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	suppress_graphics (bool) – Suppress all graphics created by the model.


	ignore (bool) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. The model results are still
postprocessed if a postprocessing is implemented. Default is False.






	Raises

	RuntimeError – If no section with name soma is found in the Neuron model.





Notes

Measures the voltage in the section with name soma.


	
evaluate(**parameters)

	Run the model with parameters and default model_kwargs options,
and validate the result.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the model, either setting them with Python, or
assigning them to the simulator.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – Result of the model. Note that values myst either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.











See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
load_neuron(path, file)[source]

	Import neuron and a neuron simulation file.


	Parameters

	
	file (str) – Filename of the Neuron model. must be a .hoc file.


	path (str) – Path to the Neuron model.






	Returns

	h – Neurons h object.



	Return type

	Neuron object



	Raises

	ImportError – If neuron is not installed.










	
load_python(path, file, name)[source]

	Import a Python neuron simulation located in function in path/file
with name name.


	Parameters

	
	file (str) – Filename of the Neuron model. must be a .hoc file.


	path (str) – Path to the Neuron model.


	name (str) – Name of the run function.






	Returns

	model – A python function imported from path/file with name name.



	Return type

	a run function






See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
postprocess(time, values, info)[source]

	Postprocessing of the time and results from the Neuron model is
generally not needed. The direct model result except the info
is returned.


	Parameters

	
	time (array_like) – Time values of the Neuron model.


	values (array_like) – Voltage of the neuron.


	info (dict) – Dictionary with information needed by features.






	Returns

	
	time (array_like) – Time values of the Neuron model.


	values (array_like) – Voltage of the neuron.















	
run

	Run the model and return time and model result.

This method must either be implemented or set to a function and is
responsible for running the model. See Notes for requirements.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the model, either setting them with Python, or
assigning them to the simulator.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – Result of the model. Note that values myst either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.








	Raises

	NotImplementedError – If no run method have been implemented or set to a function.





Notes

The run method must either be implemented or set to a
function. Both options have the following requirements:


	Input.
The model function takes a number of arguments which define the
uncertain parameters of the model.


	Run the model.
The model must then be run using the parameters given as arguments.


	Output.
The model function must return at least two objects,
the model time (or equivalent, if applicable) and model output.
Additionally, any number of optional info objects can be returned.
In Uncertainpy,
we refer to the time object as time,
the model output object as values,
and the remaining objects as info.
Note that while we refer to these objects as time,
values and info in Uncertainpy,
it does not matter what you call the objects returned by
the run function.



	Time (time).
The time can be interpreted as the x-axis of the model.
It is used when interpolating (see below),
and when certain features are calculated.
We can return None if the model has no time
associated with it.


	Model output (values).
The model output must either be regular, or it must be possible to
interpolate or postprocess the output to a regular form.


	Additional info (info).
Some of the methods provided by Uncertainpy,
such as the later defined model postprocessing,
feature preprocessing,
and feature calculations,
require additional information from the model (e.g., the time a
neuron receives an external stimulus).
We recommend to use a
single dictionary as info object,
with key-value pairs for the information,
to make debugging easier.
Uncertainpy always uses a single dictionary as the
info object.
Certain features require that specific keys are present in this
dictionary.











The model does not need to be implemented in Python, you can use any
model/simulator as long as you are able to set the model parameters of
the model from the run method Python and return the results from the
model into the run method.

If you want to calculate features directly from the original model results,
but still need to postprocess the model results to perform the
uncertainty quantification, you can implement the postprocessing in the
postprocess method.


See also

uncertainpy.features


	uncertainpy.features.Features.preprocess

	Preprocessing of model results before feature calculation



	uncertainpy.model.Model.postprocess

	Postprocessing of model result.












	
run_neuron(**parameters)[source]

	Load and run a Neuron simulation from a .hoc file and return the
model voltage in soma.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model which are set in Neuron.



	Returns

	
	time (array) – Time values of the model.


	values (array) – Voltage of the neuron. Note that values must either be regular
(have the same number of points for different parameters) or be able
to be interpolated.


	info (dictionary) – A dictionary with information needed by features. Efel features
require "stimulus_start" and "stimulus_end"
as keys, while spiking_features require stimulus_start".


	info (dictionary) – A dictionary with information needed by features.
"stimulus_start" and "stimulus_end" are returned in the info
dictionary if they are given as parameters to NeuronModel.










Notes

Efel features require "stimulus_start" and "stimulus_end"
as keys, while spiking_features require stimulus_start".


See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
run_python(**parameters)[source]

	Load and run a Python function that contains a Neuron simulation and
return the model result. The Python neuron simulation is located in
a function in path/file and name name.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model which are sent to the Python function.



	Returns

	
	time (array) – Time values of the model.


	values (array) – Voltage of the neuron. Note that values must either be regular
(have the same number of points for different parameters) or be able
to be interpolated.


	info (dictionary) – A dictionary with information needed by features. If a info
dictionary is returned by the model function it is updated with
"stimulus_start" and "stimulus_end" if they are given as
parameters to NeuronModel. If a info dictionary is not returned,
a info dictionary is added as the third return argument.










Notes

Efel features require "stimulus_start" and "stimulus_end"
as keys, while spiking_features require stimulus_start".


See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
set_parameters(parameters)[source]

	Set parameters in the neuron model.


	Parameters

	parameters (dict) – A dictionary with parameter names as keys and the parameter value as
value.










	
validate_postprocess(postprocess_result)

	Validate the results from postprocess.

This method ensures that postprocess returns time and values.


	Parameters

	model_results – Any type of postprocessed model results returned by postprocess.



	Raises

	
	ValueError – If the postprocessed model result does not fit the requirements.


	TypeError – If the postprocessed model result does not fit the requirements.








Notes

Tries to verify that time and values are returned from postprocess.
postprocess must return two objects on the format:
return time, values, where:


	
	time_postprocessed{None, numpy.nan, array_like}.

	The first object is the postprocessed time (or equivalent)
of the model.
We can return None if the model has no time.
Note that the automatic interpolation of the postprocessed
time can only be performed if a postprocessed time is returned
(if an interpolation is required).







	
	values_postprocessedarray_like.

	The second object is the postprocessed model output.









Both of these must be regular or on a form that can be interpolated.


See also

uncertainpy.models.Model.postprocess()








	
validate_run(model_result)

	Validate the results from run.

This method ensures run returns time, values, and optional
info objects.


	Parameters

	model_results – Any type of model results returned by run.



	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	time : {None, numpy.nan, array_like}.
Time values of the model. If no time values it should return None or
numpy.nan.


	values : array_like
Result of the model.


	info, optional.
Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.





See also

uncertainpy.models.Model.run()

















          

      

      

    

  

    
      
          
            
  
NestModel

NEST [http://www.nest-simulator.org/]  is a simulator for large networks of spiking neurons.
NEST models are supported through the NestModel class,
another subclass of Model:

model = un.NestModel(run=nest_model_function)





NestModel requires the model function to be specified through
the run argument, unlike NeuronModel.
The NEST model function has the same requirements as a regular model function,
except it is restricted to return only two objects:
the final simulation time (denoted simulation_end),
and a list of spike times for each neuron in the network,
which we refer to as spiketrains (denoted spiketrains).

A spike train returned by a NEST model is a set of irregularly spaced time
points where a neuron fired a spike.
NEST models therefore require postprocessing to make the model output regular.
Such a postprocessing is provided by the implemented
postprocess() method, which converts a spiketrain to a
list of zeros (no spike) and ones (a spike) for each time step in the simulation.
For example, if a NEST simulation returns the spiketrain [0, 2, 3.5],
it means the neuron fired three spikes occurring at
\(t= 0, 2, \text{and } 3.5\) ms.
If the simulation have a time resolution of \(0.5\) ms and ends
after \(4\) ms,
NestModel.postprocess returns the
postprocessed spiketrain [1, 0, 0, 0, 1, 0, 0, 1, 0],
and the postprocessed time array [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4].
The final uncertainty quantification of a NEST network therefore predicts the
probability for a spike to occur at any specific time point in the simulation.
An example on how to use NestModel is found in the
Brunel exampel.


API Reference


	
class uncertainpy.models.NestModel(run=None, interpolate=False, ignore=False, labels=[u'Time (ms)', u'Neuron nr', u'Spiking probability'], logger_level=u'info', **model_kwargs)[source]

	Class for NEST simulator models.

The run method must either be implemented or set to a
function, and is responsible for running the NEST model.


	Parameters

	
	run ({None, function}, optional) – A function that implements the model. See Note for requirements of the
function. Default is None.


	interpolate (bool, optional) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	ignore (bool, optional) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. Default is False.


	labels (list, optional) – A list of label names for the axes when plotting the model.
On the form ["x-axis", "y-axis", "z-axis"], with the number of axes
that is correct for the model output.
Default is ["Time (ms)", "Neuron nr", "Spiking probability"].


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed.
Default logger level is “info”.


	**model_kwargs – Any number of arguments passed to the model function when it is run.






	Variables

	
	run (uncertainpy.models.Model.run) – 


	labels (list, optional) – A list of label names for the axes when plotting the model.


	interpolate (bool) – True if the model is irregular, meaning it has a varying number of
return values between different model evaluations, and
an interpolation of the results is performed. Default is False.


	ignore (bool, optional) – Ignore the model results when calculating uncertainties, which means the
uncertainty is not calculated for the model. The model results are still
postprocessed. Default is False.






	Raises

	ImportError – If nest is not installed.






See also

uncertainpy.models.NestModel.run




	
evaluate(**parameters)

	Run the model with parameters and default model_kwargs options,
and validate the result.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the model, either setting them with Python, or
assigning them to the simulator.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model, if no time values returns None or
numpy.nan.


	values (array_like) – Result of the model. Note that values myst either be regular
(have the same number of points for different paramaters) or be able
to be interpolated.


	info, optional – Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.











See also


	uncertainpy.models.Model.run()

	Requirements for the model run function.












	
postprocess(simulation_end, spiketrains)[source]

	Postprocessing of the spiketrains from a Nest model.

For each neuron, convert a spiketrain to a list of the probability for
a spike at each timestep, as well as creating a time array. For each
timestep in the simulation the result is 0 if there is no spike
and 1 if there is a spike.


	Parameters

	
	simulation_end ({int, float}) – The final simulation time.


	spiketrains (list) – A list of spike trains for each neuron.






	Returns

	
	time (array) – A time array of all time points in the Nest simulation.


	spiketrains (list) – A list of the probability for a spike at each timestep, for each
neuron.










Example

In a simulation that gives the spiketrain [0, 2, 3], with a
time resolution of 0.5 ms and that ends after 4 ms,
the resulting spike train become:
[1, 0, 0, 0, 1, 0, 1, 0, 0].






	
run

	Run a Nest model and return the final simulation time and the
spiketrains.

This method must either be implemented or set to a function and is
responsible for running the model. See Notes for requirements.


	Parameters

	**parameters (A number of named arguments (name=value).) – The parameters of the model. These parameters must be assigned to
the NEST model.



	Returns

	
	simulation_end ({int, float}) – The final simulation time.


	spiketrains (list) – A list of spike trains for each neuron.








	Raises

	NotImplementedError – If no run method have been implemented or set to a function.





Notes

The run method must either be implemented or set to a
function. Both options have the following requirements:


	Input.
The model function takes a number of arguments which define the
uncertain parameters of the model.


	Run the model.
The NEST model must then be run using the parameters given as arguments.


	Output.
The model function must return:



	Time (simulation_end).
The final simulation time of the NEST model.


	Model output (spiketrains).
A list if spike trains from each recorded neuron.











The model results simulation_end and spiketrains are used to calculate
the features, and is postprocessed to create a regular result before
the calculating the uncertainty of the model.


See also

uncertainpy.model.Model.postprocess








	
set_parameters(**parameters)

	Set all named arguments as attributes of the model class.


	Parameters

	**parameters (A number of named arguments (name=value).) – All set as attributes of the class.










	
validate_postprocess(postprocess_result)

	Validate the results from postprocess.

This method ensures that postprocess returns time and values.


	Parameters

	model_results – Any type of postprocessed model results returned by postprocess.



	Raises

	
	ValueError – If the postprocessed model result does not fit the requirements.


	TypeError – If the postprocessed model result does not fit the requirements.








Notes

Tries to verify that time and values are returned from postprocess.
postprocess must return two objects on the format:
return time, values, where:


	
	time_postprocessed{None, numpy.nan, array_like}.

	The first object is the postprocessed time (or equivalent)
of the model.
We can return None if the model has no time.
Note that the automatic interpolation of the postprocessed
time can only be performed if a postprocessed time is returned
(if an interpolation is required).







	
	values_postprocessedarray_like.

	The second object is the postprocessed model output.









Both of these must be regular or on a form that can be interpolated.


See also

uncertainpy.models.Model.postprocess()








	
validate_run(model_result)

	Validate the results from run.

This method ensures run returns time, values, and optional
info objects.


	Parameters

	model_results – Any type of model results returned by run.



	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	time : {None, numpy.nan, array_like}.
Time values of the model. If no time values it should return None or
numpy.nan.


	values : array_like
Result of the model.


	info, optional.
Any number of info objects that is passed on to feature calculations.
It is recommended to use a single dictionary with the information
stored as key-value pairs.
This is what the implemented features requires, as well as
require that specific keys to be present.





See also

uncertainpy.models.Model.run()

















          

      

      

    

  

    
      
          
            
  
Multiple model outputs

Uncertainpy is usable with multiple model outputs.
However, it does unfortunately not have direct support for this,
you have to use a small trick.
Uncertainpy by default only performs an uncertainty quantification of the first
model output returned.
But you can return the additional model outputs in the
info dictionary,
and then define new features that extract each model output from the info
dictionary,
and then returns the additional model output.

Here is an example that shows how to do this:

import uncertainpy as un
import chaospy as cp

# Example model with multiple outputs
def example_model(parameter_1, parameter_2):
    # Perform all model calculations here

    time = ...

    model_output_1 = ...
    model_output_2 = ...
    model_output_3 = ...

    # We can store the additional model outputs in an info
    # dictionary
    info = {"model_output_2": model_output_2,
            "model_output_3": model_output_3}

    # Return time, model output and info dictionary
    # The first model output (model_output_1) is automatically used in the
    # uncertainty quantification
    return time, model_output_1, info





We can perform an uncertainty quantification of the other model outputs by
creating a feature for each of the additional model outputs by extracting the
output from the info dictionary and then return the output:

def model_output_2(time, model_output_1, info):
    return time, info["model_output_2"]

def model_output_3(time, model_output_1, info):
    return time, info["model_output_3"]

feature_list = [model_output_2, model_output_3]

# Define the parameter dictionary
parameters = {"parameter_1": cp.Uniform(),
            "parameter_2": cp.Uniform()}

# Set up the uncertainty quantification
UQ = un.UncertaintyQuantification(model=example_model,
                                parameters=parameters,
                                features=feature_list)

# Perform the uncertainty quantification using
# polynomial chaos with point collocation (by default)
data = UQ.quantify()





Alternatively, we can directly return all model outputs,
but you are then unable to use the built-in features in Uncertainpy:

# Example model with multiple outputs
def example_model(parameter_1, parameter_2):
    # Perform all model calculations here

    time = ...

    model_output_1 = ...
    model_output_2 = ...
    model_output_3 = ...

    # Return time, model output and info dictionary
    # The first model output (model_output_1) is automatically used in the
    # uncertainty quantification
return time, model_output_1,  model_output_2, model_output_3


# We can perform an uncertainty quantification of the other model
# outputs by creating a feature for each of the additional
# model outputs by extracting the output from the info dictionary and
# then return the output

def model_output_2(time, model_output_1, model_output_2, model_output_3):
    return time, model_output_2

def model_output_3(time, model_output_1, model_output_2, model_output_3):
    return time, model_output_3









          

      

      

    

  

    
      
          
            
  
Parameters

The parameters of a model are defined by two properties
they must have (i) a name and (ii) either a fixed value or a distribution.
It is important that the name of the parameter is the same as the name given
as the input argument in the model function.
A parameter is considered uncertain if it has a probability distribution,
and the distributions are given as Chaospy distributions.
64 different univariate distributions are defined in Chaospy.
For a list of available distributions and detailed instructions on how to create
probability distributions with Chaospy,
see Section 3.3 in the Chaospy paper [https://www.sciencedirect.com/science/article/pii/S1877750315300119].

The parameters are defined by the Parameters  class.
Parameters takes the argument parameters.
parameters can be on many different forms, but the most useful is
a dictionary with the above information,
the names of the parameters are the keys,
and the fixed values or distributions of the parameters are the values.
As an example, if we have two parameters,
where the first is named name_1 and has a uniform probability
distributions in the interval \([8, 16]\), and the second is named
name_2 and has a fixed value 42, the list become:

import chaospy as cp
parameters = {"name_1": cp.Uniform(8, 16), "name_2": 42}





And Parameters is initialized:

parameters = un.Parameters(parameters=parameters)





The other possible forms that parameters can take are:



	{name_1: parameter_object_1, name: parameter_object_2, ...}


	{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}


	[parameter_object_1, parameter_object_2, ...],


	[[name_1, value_1 or Chaospy distribution], ...].


	[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]







Where name is the name of the parameter and parameter_object is a Parameter
object (see below).
The parameter argument in UncertaintyQuantification is either
Parameters object, or a parameters dictionary/list as shown above.

Each parameter in Parameters is a Parameter object.
Each Parameter object is responsible for storing the name and fixed value
and/or distribution of each parameter.
It is initialized as:

parameter = Parameter(name="name_1", distribution=cp.Uniform(8, 16))





In general you should not need to use Parameter, it is mainly for internal
use in Uncertainpy


API Reference



	Parameters

	Parameter











          

      

      

    

  

    
      
          
            
  
Parameters


	
class uncertainpy.Parameters(parameters={}, distribution=None)[source]

	A collection of parameters.

Has all standard dictionary methods implemented, such as items, value,
contains and similar implemented. As such, behaves as an ordered dictionary.


	Parameters

	
	parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, …], list of Parameter instances, list [[name, value or Chaospy distribution], …], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],…],}) – List or dictionary of the parameters that should be created.
On the form parameters =



	{name_1: parameter_object_1, name: parameter_object_2, ...}


	{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}


	[parameter_object_1, parameter_object_2, ...],


	[[name_1, value_1 or Chaospy distribution], ...].


	[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]









	distribution ({None, multivariate Chaospy distribution}, optional) – A multivariate distribution of all parameters, if it exists, it is used
instead of individual distributions.
Defaults to None.






	Variables

	
	parameters (dict) – A dictionary of parameters with name as key and Parameter object as value.


	distribution ({None, multivariate Chaospy distribution}, optional) – A multivariate distribution of all parameters, if it exists, it is used
instead of individual distributions. Defaults to None.








Notes

Both parameter values and parameter distributions must be set if
uncertainpy.UncertaintyQuantification.quantify is run with single=True,
meaning the uncertainty quantification should be performed with only one
uncertain parameter at the time.


See also

uncertainpy.Parameter




	
__delitem__(name)[source]

	Delete parameter with name.


	Parameters

	name (str) – Name of parameter.










	
__getitem__(name)[source]

	Return Parameter object with name.


	Parameters

	name (str) – Name of parameter.



	Returns

	The parameter object with name.



	Return type

	Parameter object










	
__iter__()[source]

	Iterate over the parameter objects.


	Yields

	Parameter object – A parameter object.










	
__len__()[source]

	Get the number of parameters.


	Returns

	The number of parameters.



	Return type

	int










	
__setitem__(name, parameter)[source]

	Set parameter with name.


	Parameters

	
	name (str) – Name of parameter.


	parameter (Parameter object) – The parameter object of name.













	
__str__()[source]

	Convert all parameters to a readable string.


	Returns

	A readable string of all parameter objects.



	Return type

	str










	
clear() → None.  Remove all items from D.

	




	
get(attribute=u'name', parameter_names=None)[source]

	Return attributes from all parameters.

Return a list of attributes (name, value, or distribution) from
each parameters (parameters that have a distribution).


	Parameters

	
	attribute ({“name”, “value”, “distribution”}, optional) – The name of the attribute to be returned from each uncertain parameter. Default is name.


	parameter_names ({None, list, str}, optional) – A list of all parameters of which attribute should be returned,
or a string for a single parameter.
If None, the attribute all parameters are returned.
Default is None.






	Returns

	List containing the attribute of each parameters.



	Return type

	list










	
get_from_uncertain(attribute=u'name')[source]

	Return attributes from uncertain parameters.

Return a list of attributes (name, value, or distribution) from
each uncertain parameters (parameters that have a distribution).


	Parameters

	attribute ({“name”, “value”, “distribution”}, optional) – The name of the attribute to be returned from each uncertain parameter.
Default is name.



	Returns

	List containing the attribute of each uncertain parameters.



	Return type

	list










	
items() → list of D's (key, value) pairs, as 2-tuples

	




	
iteritems() → an iterator over the (key, value) items of D

	




	
iterkeys() → an iterator over the keys of D

	




	
itervalues() → an iterator over the values of D

	




	
keys() → list of D's keys

	




	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.






	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.






	
reset_parameter_file(filename)[source]

	Set all parameters to their value in a parameter file.

For all parameters, search filename for occurrences of
parameter_name = number and replace number with value of that parameter.


	Parameters

	filename (str) – Name of file.










	
set_all_distributions(distribution)[source]

	Set the distribution of all parameters.


	Parameters

	distribution ({None, Chaospy distribution, Function that returns a Chaospy distribution}) – The distribution of the parameter.










	
set_distribution(parameter, distribution)[source]

	Set the distribution of a parameter.


	Parameters

	
	parameter (str) – Name of parameter.


	distribution ({None, Chaospy distribution, Function that returns a Chaospy distribution}) – The distribution of the parameter.













	
set_parameters_file(filename, parameters)[source]

	Set listed parameters to their value in a parameter file.

For each parameter listed in parameters, search filename for occurrences of
parameter_name = number and replace number with value of that parameter.


	Parameters

	
	filename (str) – Name of file.


	parameters (list) – List of parameter names.













	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	




	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v






	
values() → list of D's values

	











          

      

      

    

  

    
      
          
            
  
Parameter


	
class uncertainpy.Parameter(name, value=None, distribution=None)[source]

	Parameter object, contains name of parameter, value of parameter and distribution of parameter.


	Parameters

	
	name (str) – Name of the parameter.


	value (float, int, None) – The fixed value of the parameter. If you give a parameter a distribution,
in most cases you do not need to give it a fixed value.


	distribution ({None, Chaospy distribution, Function that returns a Chaospy distribution}, optional) – The distribution of the parameter. A parameter is considered uncertain
if it has a distribution.
Defaults to None.






	Variables

	
	name (str) – Name of the parameter.


	value (float, int) – The value of the parameter.


	distribution (uncertainpy.Parameter.distribution) – The distribution of the parameter. A parameter is considered uncertain
if it has a distribution.









	
__str__()[source]

	Return a readable string describing the parameter.


	Returns

	A string containing name, value, and if a parameter is uncertain.



	Return type

	str










	
distribution

	A Chaospy distribution or a function that returns a Chaospy distribution.
If None the parameter has no distribution and is not considered uncertain.


	Parameters

	distribution ({None, Chaospy distribution, callable that returns a Chaospy distribution}, optional) – The distribution of the parameter, used if the parameter is uncertain
If it is a callable that returns a Chaospy distribution, the
function sends value value to the function.
Defaults to None.



	Returns

	distribution – The distribution of the parameter, if None the
parameter has no distribution and is not considered uncertain.



	Return type

	{Chaospy distribution, None}










	
reset_parameter_file(filename)[source]

	Set all parameters to the original value in the parameter file, filename.


	Parameters

	filename (str) – Name of file.










	
set_parameter_file(filename, value)[source]

	Set parameters to given value in a parameter file.

Search filename for occurrences of name = number
and replace number with value.


	Parameters

	
	filename (str) – Name of file.


	value (float, int) – New value to set in parameter file.




















          

      

      

    

  

    
      
          
            
  
Features

The activity of a biological system typically varies between recordings,
even if the experimental conditions are maintained constant to the highest
degree possible.
Since the experimental data displays such variation,
it is often meaningless (or even misguiding) to base the success of a
computational model on a direct point-to-point comparison between the
experimental data and model output (Druckmann et al., 2007 [http://journal.frontiersin.org/article/10.3389/neuro.01.1.1.001.2007/abstract]; Van Geit et al., 2008 [https://link.springer.com/article/10.1007/s00422-008-0257-6]).
A common modeling practice is therefore to rather have the model reproduce
essential features of the experimentally observed dynamics,
such as the action potential shape, or action potential firing rate
(Druckmann et al., 2007 [http://journal.frontiersin.org/article/10.3389/neuro.01.1.1.001.2007/abstract]).
Such features are typically more robust between different experimental
measurements, or between different model simulations,
than the raw data or raw model output,
at least if sensible features have been chosen.

Uncertainpy takes this aspect of neural modeling into account,
and is constructed so it can extract a set of features relevant for various
common model types in neuroscience from the raw model output.
Examples include the action potential shape in single neuron models,
or the average interspike interval in network models.
If we give the features argument to
UncertaintyQuantification,
Uncertainpy will perform uncertainty quantification and sensitivity analysis
of the given features,
in addition to the analysis of the “raw” output data.
The value of feature based analysis is illustrated in the two examples on
a multi-compartment model of a thalamic interneuron and
a sparsely connected recurrent network.

The main class is Features.
This class does not implement any specific features itself, but
contain all common methods used by features.
It is also used when creating custom features.
Three sets of features comes pre-defined with Uncertainpy. Two sets of features
for spiking models that returns voltage traces: SpikingFeatures
and EfelFeatures.
And one set of features for network models that return spiketrains NetworkFeatures
Then there are two general classes
for spiking (GeneralSpikingFeatures) and network features
(GeneralNetworkFeatures) that implements common methods
used by the two spiking features and network features respectively.
These classes does not implement any specific models themselves.



	Features

	Spiking features

	Spikes

	EfelFeatures

	NetworkFeatures

	GeneralNetworkFeatures

	GeneralSpikingFeatures









          

      

      

    

  

    
      
          
            
  
Features

The Features class is used when creating custom features.
Additionally it contains all common methods used by all features.
The most common arguments to Features are:

list_of_feature_functions = [example_feature]

features = un.Features(new_features=list_of_feature_functions,
                       features_to_run=["example_feature"],
                       preprocess=example_preprocess,
                       interpolate=["example_feature"])





new_features is a list of Python functions that each calculates a
specific feature,
whereas features_to_run tells which of the features to
perform uncertainty quantification of.
If nothing is specified, the uncertainty quantification is by default performed
on all features (features_to_run="all").
preprocess() requires a Python function
that performs common calculations for all features.
interpolate is a list of features that must be interpolated.
As with models,
Uncertainpy automatically interpolates the output of such features
to a regular form.
Below we first go into details on the requirements of a feature function,
and then the requirements of a preprocess function.


Feature functions

A specific feature is given as a Python function.
The outline of such a feature function is:

def example_feature(time, values, info):
    # Calculate the feature using time, values and info.

    # Return the feature times and values.
    return time_feature, values_feature





Feature functions have the following requirements:


	Input.
The feature function takes the objects returned by the
model function as input, except in the case when a
preprocess function is used (see below).
In that case, the feature function instead takes
the objects returned by the preprocess function as input
preprocess is normally not used.


	Feature calculation.
The feature function calculates the value of a feature from the data
given in time, values and optional
info objects.
As previously mentioned, in all built-in features in Uncertainpy,
info is a dictionary containing required
information as key-value pairs.


	Output.
The feature function must return two objects:


	Feature time (time_feature).
The time (or equivalent) of the feature.
We can return None instead for features where it
is not relevant.


	Feature values (values_feature).
The result of the feature calculation.
As for the model output,
the feature results must be regular,
or able to be interpolated.
If there are no feature results for a specific model evaluation
(e.g., if the feature was spike width and there was no spike),
the feature function can return None.
The specific feature evaluation is then discarded in the
uncertainty calculations.








As with models,
we can as a shortcut give a list of feature functions as the
feature argument in UncertaintyQuantification,
instead of first having to create a Features instance.




Feature preprocessing

Some of the calculations needed to quantify features may overlap between
different features.
One example is finding the spike times from a voltage trace.
The preprocess function is used to avoid having to perform the
same calculations several times.
An example outline of a preprocess function is:

def preprocess(time, values, info):
    # Perform all common feature calculations using time,
    # values, and info returned by the model function.

    # Return the preprocessed model output and info.
    return time_preprocessed, values_preprocessed, info





The requirements for a preprocess function are:


	Input.
A preprocess function takes the objects returned by the
model function as input.


	Preprocesssing.
The model output time, values,
and additional info objects are used to
perform all preprocess calculations.


	Output.
The preprocess function can return any number of objects
as output.
The returned preprocess objects are used as input arguments to the
feature functions,
so the two must be compatible.




[image: ../_images/diagram.png]
This figure illustrates how the objects returned by the model function
are passed to preprocess,
and the returned preprocess objects are used as input arguments in all
feature functions.
Functions associated with the model are in red while functions
associated with features are in green.
The preprocessing makes it so feature functions have different required input
arguments depending on the feature class they are added to.
As mentioned earlier,
Uncertainpy comes with three built-in feature classes.
These classes all take the new_features argument,
so custom features can be added to each set of features.
These feature classes perform a preprocessing, and therefore have different
requirements for the input arguments of new feature functions.
Additionally, certain features require specific keys to be present in the
info dictionary.
Each class has a reference_feature method that states
the requirements for feature functions of that class in its docstring.




API Reference


	
class uncertainpy.features.Features(new_features=None, features_to_run=u'all', new_utility_methods=None, interpolate=None, labels={}, preprocess=None, logger_level=u'info')[source]

	Class for calculating features of a model.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods in this class that is not in
the list of utility methods, is considered to be a feature.
Default is None.


	interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregular, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each irregular feature to create regular results.
If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.


	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features to be interpolated.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.









See also


	uncertainpy.features.Features.reference_feature

	reference_feature showing the requirements of a feature function.








	
add_features(new_features, labels={})[source]

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
calculate_all_features(*model_results)[source]

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)[source]

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)[source]

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()[source]

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
preprocess

	Preprossesing of the time time and results values from the model, before the
features are calculated.

No preprocessing is performed, and the direct model results are
currently returned. If preprocessing is needed it should follow the
below format.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	Returns any number of values that are sent to each feature.
The values returned must compatible with the input arguments of
all features.



	Return type

	preprocess_results





Notes

Perform a preprossesing of the model results before the results are sent
to the calculation of each feature. It is used to perform common
calculations that each feature needs to perform, to reduce the number of
necessary calculations. The values returned must therefore be compatible
with the input arguments to each features.


See also


	uncertainpy.models.Model.run

	The model run method












	
reference_feature(*preprocess_results)[source]

	An example feature. Feature function have the following requirements.


	Parameters

	*preprocess_results – Variable length argument list. Is the values that
Features.preprocess returns. By default Features.preprocess
returns the same values as Model.run returns.



	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.











See also


	uncertainpy.features.Features.preprocess()

	The features preprocess method.



	uncertainpy.models.Model.run()

	The model run method



	uncertainpy.models.Model.postprocess()

	The postprocessing method.












	
validate(feature_name, *feature_result)[source]

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.























          

      

      

    

  

    
      
          
            
  
Spiking features

SpikingFeatures contains a set of features
relevant for models of single
neurons that receive an external stimulus and responds by eliciting a series of
action potentials, also called spikes.
Many of these features require the start time and end time of the stimulus,
which must be returned as info["stimulus_start"]
and info["stimulus_start"] in the model function.
info is then used as an additional input argument in the
calculation of each feature.
SpikingFeatures implements a
preprocess() method,
which locates spikes in the model output.

The features included in the SpikingFeatures are briefly defined
below.
This set of features was taken from the previous work of Druckmann et al., 2007 [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570085/],
with the addition of the number of action potentials during the stimulus period.
We refer to the original publication for more detailed definitions.



	nr_spikes – Number of action potentials
(during stimulus period).


	spike_rate – Action potential firing rate
(number of action potentials divided by stimulus duration).


	time_before_first_spike – Time from stimulus onset to
first elicited action potential.


	accommodation_index – Accommodation index (normalized
average difference in length of two consecutive interspike intervals).


	average_AP_overshoot – Average action potential
peak voltage.


	average_AHP_depth – Average afterhyperpolarization
depth (average minimum voltage between action potentials).


	average_AP_width – Average action potential width taken
at midpoint between the onset and peak of the action potential.







A set of standard spiking features is already included in
SpikingFeatures,
but the user may want to add custom features.
The preprocess() method changes the input given to
the feature functions,
and as such each spiking feature function has the following input arguments:



	The time array returned by the model simulation.


	An Spikes object (spikes)
which contain the spikes found in the model output.


	An info dictionary with info["stimulus_start"]
and info["stimulus_end"] set.







The Spikes object is a preprocessed version of the model output,
used as a container for Spike objects.
In turn, each Spike object contain information of a single spike.
This information includes a brief voltage trace represented by a time
and a voltage (V) array that only includes the selected spike.
The information in Spikes is used to calculate each feature.
As an example, let us assume we want to create a feature that is the time
at which the first spike in the voltage trace ends.
Such a feature can be defined as follows:

def first_spike_end_time(time, spikes, info):
    # Calculate the feature from the spikes object
    spike = spikes[0]              # Get the first spike
    values_feature = spike.t[-1]   # The last time point in the spike

    return None, values_feature





This feature may now be used as a feature function in the list given to the
new_features argument.

From the set of both built-in and user defined features,
we may select subsets of features that we want to use in the analysis of a
model.
Let us say we are interested in how the model performs in terms of the three
features: nr_spikes, average_AHP_depth and
first_spike_end_time.
A spiking features object that calculates these features is created by:

features_to_run = ["nr_spikes",
                   "average_AHP_depth",
                   "first_spike_end_time"]

features = un.SpikingFeatures(new_features=[first_spike_end_time],
                              features_to_run=features_to_run)






API Reference


	
class uncertainpy.features.SpikingFeatures(new_features=None, features_to_run=u'all', interpolate=None, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0, labels={}, strict=True, logger_level=u'info')[source]

	Spiking features of a model result, works with single neuron models and
voltage traces.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods in this class that is not in
the list of utility methods, is considered to be a feature.
Default is None.


	interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregular, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each irregular feature to create regular results.
If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.


	threshold ({float, int, “auto”}, optional) – The threshold where the model result is considered to have a spike.
If “auto” the threshold is set to the standard variation of the
result. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold.
Default is -10.


	extended_spikes (bool, optional) – If the found spikes should be extended further out than the threshold
cuttoff. If True the spikes is considered to start and end where the
derivative equals 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value. Default is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.


	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	strict (bool, optional) – If True, missing "stimulus_start" and "stimulus_end" from info
raises a ValueError. If False the simulation start time is used
as "stimulus_start" and the simulation end time is used for
"stimulus_end". Default is True.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	spikes (Spikes) – A Spikes object that contain all spikes.


	threshold ({float, int}) – The threshold where the model result is considered to have a spike.


	end_threshold ({int, float}) – The end threshold for a spike relative to the threshold.


	extended_spikes (bool) – If the found spikes should be extended further out than the threshold
cuttoff.


	trim (bool) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends.


	normalize (bool) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value.


	min_amplitude ({int, float}) – Minimum height for what should be considered a spike.


	min_duration ({int, float}) – Minimum duration for what should be considered a spike.


	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features to be interpolated.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.


	strict (bool) – If missing info values should raise an error.






	Raises

	ImportError – If scipy is not installed.





Notes

The implemented features are:







	nr_spikes

	time_before_first_spike



	spike_rate

	average_AP_overshoot



	average_AHP_depth

	average_AP_width



	accommodation_index

	average_duration






Most of the feature are from:
Druckmann, S., Banitt, Y., Gidon, A. A., Schurmann, F., Markram, H., and Segev, I.
(2007). A novel multiple objective optimization framework for constraining conductance-
based neuron models by experimental data. Frontiers in Neuroscience 1, 7-18. doi:10.
3389/neuro.01.1.1.001.2007


See also


	uncertainpy.features.Features.reference_feature

	reference_feature showing the requirements of a feature function.



	uncertainpy.features.Spikes

	Class for finding spikes in the model result.








	
accommodation_index(time, spikes, info)[source]

	The accommodation index.

The accommodation index is the average of the difference in length of
two consecutive interspike intervals normalized by the summed duration
of the two interspike intervals.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – Not used in this feature.






	Returns

	
	time (None)


	accommodation_index ({float, None}) – The accommodation index. Returns None if there are
less than two spikes in the model result.










Notes

The accommodation index is defined as:


\[A = \frac{1}{N-k-1} \sum_{i=k}^N \frac{\text{ISI}_i - \text{ISI}_{i-1}}{\text{ISI}_i + \text{ISI}_{i-1}},\]

where ISI is the interspike interval, N the number of spikes, and
k is defined as:


\[k = \min \left\{4, \frac{\text{Number of ISIs}}{5}\right\}.\]






	
add_features(new_features, labels={})

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
average_AHP_depth(time, spikes, info)[source]

	The average action potential depth.

The minimum of the model result between two consecutive spikes (action
potentials).


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – Not used in this feature.






	Returns

	
	time (None)


	average_AHP_depth ({float, None}) – The average action potential depth. Returns None if there are
no spikes in the model result.















	
average_AP_overshoot(time, spikes, info)[source]

	The average action potential overshoot,

The average of the absolute peak voltage values of all spikes
(action potentials).


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – Not used in this feature.






	Returns

	
	time (None)


	average_AP_overshoot ({float, None}) – The average action potential overshoot. Returns None if there are
no spikes in the model result.















	
average_AP_width(time, spikes, info)[source]

	The average action potential width.

The average of the width of every spike (action potential) at the
midpoint between the start and maximum of each spike.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – Not used in this feature.






	Returns

	
	time (None)


	average_AP_width ({float, None}) – The average action potential width. Returns None if there are
no spikes in the model result.















	
average_duration(time, spikes, info)[source]

	The average duration of an action potential, from the action potential
onset to action potential termination.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – Not used in this feature.






	Returns

	
	time (None)


	average_AP_width ({float, None}) – The average action potential width. Returns None if there are
no spikes in the model result.















	
calculate_all_features(*model_results)

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_spikes(time, values, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0)

	Calculating spikes of a model result, works with single neuron models and
voltage traces.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	values (array_like) – Result of the model.


	threshold ({float, int, “auto”}, optional) – The threshold where the model result is considered to have a spike.
If “auto” the threshold is set to the standard variation of the
result. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold.
Default is -10.


	extended_spikes (bool, optional) – If the found spikes should be extended further out than the threshold
cuttoff. If True the spikes is considered to start and end where the
derivative equals 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value. Default is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it returns None or numpy.nan.


	values (Spikes) – The spikes found in the model results.











See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.



	uncertainpy.features.Spikes()

	Class for finding spikes in the model result.












	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
nr_spikes(time, spikes, info)[source]

	The number of spikes in the model result during the stimulus period.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – If strict=True, requires info["stimulus_start"] and
info['stimulus_end'] set.






	Returns

	
	time (None)


	nr_spikes (int) – The number of spikes in the model result.








	Raises

	
	ValueError – If strict is True and "stimulus_start" and "stimulus_end" are
missing from info.


	ValueError – If stimulus_start >= stimulus_end.













	
preprocess(time, values, info)

	Calculating spikes from the model result.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	values (array_like) – Result of the model.


	info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it returns None or numpy.nan.


	values (Spikes) – The spikes found in the model results.


	info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].










Notes

Also sets self.values = values, so features have access to self.values if necessary.


See also


	uncertainpy.models.Model.run()

	The model run method



	uncertainpy.features.Spikes()

	Class for finding spikes in the model result.












	
reference_feature(time, spikes, info)

	An example of an GeneralSpikingFeature. The feature functions have the
following requirements, and the input arguments must either be
returned by Model.run or SpikingFeatures.preprocess.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – A dictionary with info[“stimulus_start”] and
info[“stimulus_end”] set.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.


	values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.











See also


	uncertainpy.features.GeneralSpikingFeatures.preprocess()

	The GeneralSpikingFeatures preprocess method.



	uncertainpy.models.Model.run()

	The model run method












	
spike_rate(time, spikes, info)[source]

	The spike rate of the model result.

Number of spikes divided by the duration.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – If strict=True, requires info["stimulus_start"] and
info['stimulus_end'] set.






	Returns

	
	time (None)


	spike_rate (float) – The spike rate of the model result.








	Raises

	
	ValueError – If strict is True and "stimulus_start" and "stimulus_end" are
missing from info.


	ValueError – If stimulus_start >= stimulus_end.













	
time_before_first_spike(time, spikes, info)[source]

	The time from the stimulus start to the first spike occurs.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – If strict=True, requires info["stimulus_start"] set.






	Returns

	
	time (None)


	time_before_first_spike ({float, None}) – The time from the stimulus start to the first spike occurs. Returns
None if there are no spikes on the model result.








	Raises

	ValueError – If strict is True and "stimulus_start" and "stimulus_end" are
missing from info.










	
validate(feature_name, *feature_result)

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.























          

      

      

    

  

    
      
          
            
  
Spikes

Spikes is responsible for locating spikes in a voltage trace, and is
a container for all spikes found.
Each spike is stored in a Spike object.
Spikes is used in SpikingFeatures


API Reference


Spikes


	
class uncertainpy.features.Spikes(time=None, V=None, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0, xlabel=u'', ylabel=u'')[source]

	Finds spikes in the given voltage trace and is a container for the resulting
Spike objects.


	Parameters

	
	time (array_like) – The time of the voltage trace.


	V (array_like) – The voltage trace.


	threshold ({int, float, “auto”}) – The threshold for what is considered a spike. If the voltage trace rise
above and then fall below this threshold + end_threshold it is
considered a spike. If “auto” the threshold is set to the standard
deviation of the voltage trace. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold. Generally
negative values give the best results. Default is -10.


	extended_spikes (bool) – If the spikes should be extended past the threshold, until the
derivative of the voltage trace is below 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage trace should be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value. Default is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.


	xlabel (str, optional) – Label for the x-axis.


	ylabel (str, optional) – Label for the y-axis.






	Variables

	
	spikes (list) – A list of Spike objects.


	nr_spikes (int) – The number of spikes.


	xlabel (str, optional) – Label for the x-axis.


	ylabel (str, optional) – Label for the y-axis.


	time (array_like) – The time of the voltage trace.


	V (array_like) – The voltage trace.








Notes

The spikes are found by finding where the voltage trace goes above the
threshold, and then later falls below this threshold + end_threshold.
The spike is considered to be everything within this interval.

The spike can be extended. If extended_spikes is True, the spike is
extended around the above area until the derivative of the voltage trace
falls below 0.5. This works badly with noisy voltage traces.


See also


	Spike

	The class for a single spike.



	find_spikes

	Finding spikes in the voltage trace.








	
consecutive(data)[source]

	Returns the first consecutive array, from a discontinuous index array
such as [2, 3, 4, 5, 12, 13, 14], which returns [2, 3, 4, 5]


	Parameters

	data (array_like)



	Returns

	The first consecutive array



	Return type

	array_like










	
find_spikes(time, V, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0)[source]

	Finds spikes in the given voltage trace.


	Parameters

	
	time (array_like) – The time of the voltage trace.


	V (array_like) – The voltage trace.


	threshold ({int, float, “auto”}) – The threshold for what is considered a spike. If the voltage trace rise
above and then fall below this threshold + end_threshold it is
considered a spike. If “auto” the threshold is set to the standard
deviation of the voltage trace. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold. Generally
negative values give the best results. Default is -10.


	extended_spikes (bool, optional) – If the spikes should be extended past the threshold, until the
derivative of the voltage trace is below 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold must have a absolute value between [0, 1]. Default
is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.






	Raises

	
	ValueError – If the threshold is outside the interval [0, 1] when normalize=True.


	ValueError – If the absolute value of end_threshold is outside the
interval [0, 1] when normalize=True.








Notes

The spikes are added to self.spikes and self.nr_spikes is
updated.

The spikes are found by finding where the voltage trace goes above the
threshold, and then later falls below this threshold + end_threshold.
The spike is considered to be everything within this interval.

The spike can be extended. If extended_spikes is True, the spike is
extended around the above area until the derivative of the voltage trace
falls below 0.5. This works badly with noisy voltage traces.






	
plot_spikes(save_name=None)[source]

	Plot all spikes.


	Parameters

	save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead of saved
to disk. Default is None.










	
plot_voltage(save_name)[source]

	Plot the voltage with the peak of each spike marked.


	Parameters

	save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead of saved
to disk. Default is None.
















Spike


	
class uncertainpy.features.Spike(time, V, time_spike, V_spike, global_index, xlabel=u'', ylabel=u'')[source]

	A single spike found in a voltage trace.


	Parameters

	
	time (array_like) – The time array of the spike.


	V (array_like) – The voltage array of the spike.


	time_spike ({float, int}) – The timing of the peak of the spike.


	V_spike ({float, int}) – The voltage at the peak of the spike.


	global_index (int) – Index of the spike peak in the simulation.


	xlabel (str, optional) – Label for the x-axis.


	ylabel (str, optional) – Label for the y-axis.






	Variables

	
	time (array_like) – The time array of the spike.


	V (array_like) – The voltage array of the spike.


	time_spike ({float, int}) – The timing of the peak of the spike.


	V_spike ({float, int}) – The voltage at the peak of the spike.


	global_index (int) – Index of the spike peak in the simulation.


	xlabel (str, optional) – Label for the x-axis.


	ylabel (str, optional) – Label for the y-axis.









	
plot(save_name=None)[source]

	Plot the spike.


	Parameters

	save_name ({str, None}) – Name of the plot file. If None, the plot is shown instead of saved
to disk.
Default is None.










	
trim(threshold, min_extent_from_peak=1)[source]

	Remove the first and last values of the spike that is below threshold.


	Parameters

	
	threshold ({float, int}) – Remove all values from each side of the spike that is bellow this
value.


	min_extent_from_peak (int, optional) – Minimum extent of the spike in each direction from the peak.
























          

      

      

    

  

    
      
          
            
  
EfelFeatures

An extensive set of features for single neuron voltage traces is
found in the Electrophys Feature Extraction Library (eFEL) [https://github.com/BlueBrain/eFEL].
Uncertainpy has all features in the eFEL library
contained in the EfelFeatures class.
As with SpikingFeatures,
many of the eFEL features require the start time and end time of the stimulus,
which must be returned as info["stimulus_start"]
and info["stimulus_start"] in the model function.
eFEL currently contains 153 different features, we briefly list
them here, but refer to  the eFEL documentation [http://efel.readthedocs.io] for the definitions of each feature.








	AHP1_depth_from_peak

	AHP2_depth_from_peak

	AHP_depth



	AHP_depth_abs

	AHP_depth_abs_slow

	AHP_depth_diff



	AHP_depth_from_peak

	AHP_slow_time

	AHP_time_from_peak



	AP1_amp

	AP1_begin_voltage

	AP1_begin_width



	AP1_peak

	AP1_width

	AP2_AP1_begin_width_diff



	AP2_AP1_diff

	AP2_AP1_peak_diff

	AP2_amp



	AP2_begin_voltage

	AP2_begin_width

	AP2_peak



	AP2_width

	AP_amplitude

	AP_amplitude_change



	AP_amplitude_diff

	AP_amplitude_from_voltagebase

	AP_begin_indices



	AP_begin_time

	AP_begin_voltage

	AP_begin_width



	AP_duration

	AP_duration_change

	AP_duration_half_width



	AP_duration_half_width_change

	AP_end_indices

	AP_fall_indices



	AP_fall_rate

	AP_fall_rate_change

	AP_fall_time



	AP_height

	AP_phaseslope

	AP_phaseslope_AIS



	AP_rise_indices

	AP_rise_rate

	AP_rise_rate_change



	AP_rise_time

	AP_width

	APlast_amp



	BAC_maximum_voltage

	BAC_width

	BPAPAmplitudeLoc1



	BPAPAmplitudeLoc2

	BPAPHeightLoc1

	BPAPHeightLoc2



	BPAPatt2

	BPAPatt3

	E10



	E11

	E12

	E13



	E14

	E15

	E16



	E17

	E18

	E19



	E2

	E20

	E21



	E22

	E23

	E24



	E25

	E26

	E27



	E3

	E39

	E39_cod



	E4

	E40

	E5



	E6

	E7

	E8



	E9

	ISI_CV

	ISI_log_slope



	ISI_log_slope_skip

	ISI_semilog_slope

	ISI_values



	Spikecount

	Spikecount_stimint

	adaptation_index



	adaptation_index2

	all_ISI_values

	amp_drop_first_last



	amp_drop_first_second

	amp_drop_second_last

	burst_ISI_indices



	burst_mean_freq

	burst_number

	check_AISInitiation



	decay_time_constant_after_stim

	depolarized_base

	doublet_ISI



	fast_AHP

	fast_AHP_change

	interburst_voltage



	inv_fifth_ISI

	inv_first_ISI

	inv_fourth_ISI



	inv_last_ISI

	inv_second_ISI

	inv_third_ISI



	inv_time_to_first_spike

	irregularity_index

	is_not_stuck



	max_amp_difference

	maximum_voltage

	maximum_voltage_from_voltagebase



	mean_AP_amplitude

	mean_frequency

	min_AHP_indices



	min_AHP_values

	min_voltage_between_spikes

	minimum_voltage



	number_initial_spikes

	ohmic_input_resistance

	ohmic_input_resistance_vb_ssse



	peak_indices

	peak_time

	peak_voltage



	sag_amplitude

	sag_ratio1

	sag_ratio2



	single_burst_ratio

	spike_half_width

	spike_width2



	steady_state_hyper

	steady_state_voltage

	steady_state_voltage_stimend



	time_constant

	time_to_first_spike

	time_to_last_spike



	time_to_second_spike

	trace_check

	voltage



	voltage_after_stim

	voltage_base

	voltage_deflection







API Reference


	
class uncertainpy.features.EfelFeatures(new_features=None, features_to_run=u'all', interpolate=None, labels={}, strict=True, logger_level=u'info')[source]

	Calculating the mean value of each feature in the Electrophys Feature
Extraction Library (eFEL), see: https://github.com/BlueBrain/eFEL.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods in this class that is not in
the list of utility methods, is considered to be a feature.
Default is None.


	interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregular, meaning they have a varying number of
points between two evaluations. An interpolation is performed on
each interpolate feature to create regular results.
If "all", all features interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.


	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	strict (bool, optional) – If True, missing "stimulus_start" and "stimulus_end" from info
raises a ValueError. If False the simulation start time is used
as "stimulus_start" and the simulation end time is used for
"stimulus_end". The decay_time_constant_after_stim feature becomes
disabled with False. Default is True


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features to be interpolated.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.


	strict (bool) – If missing info values should raise an error.






	Raises

	
	ValueError – If strict is True and "stimulus_start" and "stimulus_end" are
missing from info.


	ValueError – If stimulus_start >= stimulus_end.


	ImportError – If Efel is not installed.








Notes

Efel features take the parameters (time, values, info) and require
info[“stimulus_start”] and info[“stimulus_end”] to be set.

Implemented Efel features are:








	AHP1_depth_from_peak

	AHP2_depth_from_peak

	AHP_depth



	AHP_depth_abs

	AHP_depth_abs_slow

	AHP_depth_diff



	AHP_depth_from_peak

	AHP_slow_time

	AHP_time_from_peak



	AP1_amp

	AP1_begin_voltage

	AP1_begin_width



	AP1_peak

	AP1_width

	AP2_AP1_begin_width_diff



	AP2_AP1_diff

	AP2_AP1_peak_diff

	AP2_amp



	AP2_begin_voltage

	AP2_begin_width

	AP2_peak



	AP2_width

	AP_amplitude

	AP_amplitude_change



	AP_amplitude_diff

	AP_amplitude_from_voltagebase

	AP_begin_indices



	AP_begin_time

	AP_begin_voltage

	AP_begin_width



	AP_duration

	AP_duration_change

	AP_duration_half_width



	AP_duration_half_width_change

	AP_end_indices

	AP_fall_indices



	AP_fall_rate

	AP_fall_rate_change

	AP_fall_time



	AP_height

	AP_phaseslope

	AP_phaseslope_AIS



	AP_rise_indices

	AP_rise_rate

	AP_rise_rate_change



	AP_rise_time

	AP_width

	APlast_amp



	APlast_width

	BAC_maximum_voltage

	BAC_width



	BPAPAmplitudeLoc1

	BPAPAmplitudeLoc2

	BPAPHeightLoc1



	BPAPHeightLoc2

	BPAPatt2

	BPAPatt3



	E10

	E11

	E12



	E13

	E14

	E15



	E16

	E17

	E18



	E19

	E2

	E20



	E21

	E22

	E23



	E24

	E25

	E26



	E27

	E3

	E39



	E39_cod

	E4

	E40



	E5

	E6

	E7



	E8

	E9

	ISI_CV



	ISI_log_slope

	ISI_log_slope_skip

	ISI_semilog_slope



	ISI_values

	ISIs

	Spikecount



	Spikecount_stimint

	adaptation_index

	adaptation_index2



	all_ISI_values

	amp_drop_first_last

	amp_drop_first_second



	amp_drop_second_last

	burst_ISI_indices

	burst_mean_freq



	burst_number

	check_AISInitiation

	decay_time_constant_after_stim



	depolarized_base

	doublet_ISI

	fast_AHP



	fast_AHP_change

	initburst_sahp

	initburst_sahp_ssse



	initburst_sahp_vb

	interburst_voltage

	inv_fifth_ISI



	inv_first_ISI

	inv_fourth_ISI

	inv_last_ISI



	inv_second_ISI

	inv_third_ISI

	inv_time_to_first_spike



	irregularity_index

	is_not_stuck

	max_amp_difference



	maximum_voltage

	maximum_voltage_from_voltagebase

	mean_AP_amplitude



	mean_frequency

	min_AHP_indices

	min_AHP_values



	min_voltage_between_spikes

	minimum_voltage

	number_initial_spikes



	ohmic_input_resistance

	ohmic_input_resistance_vb_ssse

	peak_indices



	peak_time

	peak_voltage

	sag_amplitude



	sag_ratio1

	sag_ratio2

	single_burst_ratio



	spike_half_width

	spike_width2

	steady_state_hyper



	steady_state_voltage

	steady_state_voltage_stimend

	time



	time

	time_constant

	time_to_first_spike



	time_to_last_spike

	time_to_second_spike

	trace_check



	voltage

	voltage

	voltage_after_stim



	voltage_base

	voltage_deflection

	voltage_deflection_begin



	voltage_deflection_vb_ssse

	
	






See also


	uncertainpy.features.EfelFeatures.reference_feature

	reference_feature showing the requirements of a Efel feature function.








	
add_features(new_features, labels={})

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
calculate_all_features(*model_results)

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
preprocess

	Preprossesing of the time time and results values from the model, before the
features are calculated.

No preprocessing is performed, and the direct model results are
currently returned. If preprocessing is needed it should follow the
below format.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	Returns any number of values that are sent to each feature.
The values returned must compatible with the input arguments of
all features.



	Return type

	preprocess_results





Notes

Perform a preprossesing of the model results before the results are sent
to the calculation of each feature. It is used to perform common
calculations that each feature needs to perform, to reduce the number of
necessary calculations. The values returned must therefore be compatible
with the input arguments to each features.


See also


	uncertainpy.models.Model.run

	The model run method












	
reference_feature(time, values, info)[source]

	An example of an Efel feature. Efel feature functions have the following
requirements, and the given parameters must either be returned by
model.run or features.preprocess.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	values (array_like) – Result of the model.


	info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”]
set.






	Returns

	
	time (None) – No mean Efel feature has time values, so None is returned instead.


	values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.











See also


	uncertainpy.features.Features.preprocess()

	The features preprocess method.



	uncertainpy.models.Model.run()

	The model run method












	
validate(feature_name, *feature_result)

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.























          

      

      

    

  

    
      
          
            
  
NetworkFeatures

NetworkFeatures contains a set of features
relevant for the output of network models and are calculated using the
Elephant software [http://neuralensemble.org/elephant/].
This set of features require that the model returns the simulation end time and
a list of spiketrains, which are the times a given neuron spikes.
The implemented features are:


	average_firing_rate – Mean firing rate (for a single recorded neuron).


	instantaneous_rate – Instantaneous firing rate (averaged over all recorded neurons within a small time window).


	mean_isi – Average interspike interval (averaged over all recorded neurons).


	cv – Coefficient of variation of the interspike interval (for a single recorded neuron).


	average_cv – average coefficient of variation of the interspike interval (averaged over all recorded neurons).


	local_variation – Local variation (variability of interspike intervals for a single recorded neuron).


	average_local_variation – Mean local variation (variability of interspike intervals averaged over all recorded neurons).


	fanofactor – Fanofactor (variability of spiketrains).


	victor_purpura_dist – Victor purpura distance (spiketrain dissimilarity between two recorded neurons).


	van_rossum_dist – Van rossum distance (spiketrain dissimilarity between two recorded neurons).


	binned_isi – Histogram of the interspike intervals (for all recorded neurons).


	corrcoef – Pairwise Pearson’s correlation coefficients (between the spiketrains of two recorded neurons).


	covariance – Covariance (between the spiketrains of two recorded neurons).




The use of the NetworkFeatures class in Uncertainpy follows the
same logic as the use of the other feature classes,
and custom features can easily be included.
As with SpikingFeatures,
NetworkFeatures implements a preprocess() method.
This preprocess returns the following objects:


	End time of the simulation (end_time).


	A list of NEO [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930095/]  spiketrains (spiketrains).




Each feature function therefore require the same objects as input arguments.
Note that a info object is not used.


API Reference


	
class uncertainpy.features.NetworkFeatures(new_features=None, features_to_run=u'all', interpolate=None, labels={}, units=None, instantaneous_rate_nr_samples=50, isi_bin_size=1, corrcoef_bin_size=1, covariance_bin_size=1, logger_level=u'info')[source]

	Network features of a model result, works with all models that return
the simulation end time, and a list of spiketrains.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregular, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each irregular feature to create regular results.
If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.


	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	units ({None, Quantities unit}, optional) – The Quantities unit of the time in the model. If None, ms is used.
The default is None.


	instantaneous_rate_nr_samples (int) – The number of samples used to calculate the instantaneous rate.
Default is 50.


	isi_bin_size (int) – The size of each bin in the binned_isi method.
Default is 1.


	corrcoef_bin_size (int) – The size of each bin in the corrcoef method.
Default is 1.


	covariance_bin_size (int) – The size of each bin in the covariance method.
Default is 1.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features to be interpolated.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.


	logger (logging.Logger) – Logger object responsible for logging to screen or file.


	instantaneous_rate_nr_samples (int) – The number of samples used to calculate the instantaneous rate.
Default is 50.


	isi_bin_size (int) – The size of each bin in the binned_isi method.
Default is 1.


	corrcoef_bin_size (int) – The size of each bin in the corrcoef method.
Default is 1.


	covariance_bin_size (int) – The size of each bin in the covariance method.
Default is 1.








Notes

Implemented features are:








	cv

	average_cv

	average_isi,



	local_variation mean

	local_variation

	average_firing_rate



	instantaneous_rate

	fanofactor

	van_rossum_dist



	victor_purpura_dist

	binned_isi

	corrcoef



	covariance

	
	





All features in this set of features take the following input arguments:


	simulation_endfloat

	The simulation end time



	neo_spiketrainslist

	A list of Neo spiketrains.





The model must return:


	simulation_endfloat

	The simulation end time



	spiketrainslist

	A list of spiketrains, each spiketrain is a list of the times when
a given neuron spikes.






	Raises

	ImportError – If elephant or quantities is not installed.






See also


	uncertainpy.features.Features.reference_feature

	reference_feature showing the requirements of a feature function.








	
add_features(new_features, labels={})

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
average_cv(simulation_end, spiketrains)[source]

	Calculate the average coefficient of variation.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	values (float) – The average coefficient of variation of each spiketrain.















	
average_firing_rate(simulation_end, spiketrains)[source]

	Calculate the mean firing rate.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	average_firing_rate (float) – The mean firing rate of all neurons.















	
average_isi(simulation_end, spiketrains)[source]

	Calculate the average interspike interval (isi) variation for each neuron.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	average_isi (float) – The average interspike interval.















	
average_local_variation(simulation_end, spiketrains)[source]

	Calculate the average of the local variation.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	average_local_variation (float) – The average of the local variation for each spiketrain.















	
binned_isi(simulation_end, spiketrains)[source]

	Calculate a histogram of the interspike interval.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (array) – The center of each bin.


	binned_isi (array) – The binned interspike intervals.















	
calculate_all_features(*model_results)

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
corrcoef(simulation_end, spiketrains)[source]

	Calculate the pairwise Pearson’s correlation coefficients.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	values (2D array) – The pairwise Pearson’s correlation coefficients.















	
covariance(simulation_end, spiketrains)[source]

	Calculate the pairwise covariances.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	values (2D array) – The pairwise covariances.















	
cv(simulation_end, spiketrains)[source]

	Calculate the coefficient of variation for each neuron.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	values (array) – The coefficient of variation for each spiketrain.















	
fanofactor(simulation_end, spiketrains)[source]

	Calculate the fanofactor.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	fanofactor (float) – The fanofactor.















	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
instantaneous_rate(simulation_end, spiketrains)[source]

	Calculate the mean instantaneous firing rate.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (array) – Time of the instantaneous firing rate.


	instantaneous_rate (float) – The instantaneous firing rate.















	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
local_variation(simulation_end, spiketrains)[source]

	Calculate the measure of local variation.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	local_variation (list) – The local variation for each spiketrain.















	
preprocess(simulation_end, spiketrains)

	Preprossesing of the simulation end time simulation_end and
spiketrains spiketrains from the model, before the features are
calculated.


	Parameters

	
	simulation_end (float) – The simulation end time


	spiketrains (list) – A list of spiketrains, each spiketrain is a list of the times when
a given neuron spikes.






	Returns

	
	simulation_end (float) – The simulation end time


	neo_spiketrains (list) – A list of Neo spiketrains.








	Raises

	ValueError – If simulation_end is np.nan or None.





Notes

This preprocessing makes it so all features get the input
simulation_end and spiketrains.


See also


	uncertainpy.models.Model.run()

	The model run method












	
reference_feature(simulation_end, neo_spiketrains)

	An example of an GeneralNetworkFeature. The feature functions have the
following requirements, and the given parameters must either be
returned by model.run or features.preprocess.


	Parameters

	
	simulation_end (float) – The simulation end time


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.


	values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.











See also


	uncertainpy.features.GeneralSpikingFeatures.preprocess()

	The GeneralSpikingFeatures preprocess method.



	uncertainpy.models.Model.run()

	The model run method












	
validate(feature_name, *feature_result)

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.














	
van_rossum_dist(simulation_end, spiketrains)[source]

	Calculate van Rossum distance.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	van_rossum_dist (2D array) – The van Rossum distance.















	
victor_purpura_dist(simulation_end, spiketrains)[source]

	Calculate the Victor-Purpura’s distance.


	Parameters

	
	simulation_end (float) – The simulation end time.


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time (None)


	values (2D array) – The Victor-Purpura’s distance.
























          

      

      

    

  

    
      
          
            
  
GeneralNetworkFeatures

GeneralNetworkFeatures implements the
preprocessing of spiketrains, and create NEO [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930095/] spiketrains,
but does not implement any features in itself.
This set of features require that the model returns the simulation end time and
a list of spiketrains, which are the times a given neuron spikes.
The preprocess() method
changes the input given to the feature functions,
and as such each network feature function has the following input arguments:


	End time of the simulation (end_time).


	A list of NEO [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930095/]  spiketrains (spiketrains).





API Reference


	
class uncertainpy.features.GeneralNetworkFeatures(new_features=None, features_to_run=u'all', interpolate=None, labels={}, units=None, logger_level=u'info')[source]

	Class for creating NEO spiketrains from a list of spiketrains, for network
models. The model must return the simulation end time and a list of
spiketrains.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	
	new_utility_methods ({None, list}, optional) –  A list of new utility methods. All methods in this class that is not in

	the list of utility methods, is considered to be a feature.
Default is None.



	interpolate{None, “all”, str, list of feature names}, optional

	Which features are irregular, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each irregular feature to create regular results.
If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.







	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	units ({None, Quantities unit}, optional) – The Quantities unit of the time in the model. If None, ms is used.
The default is None.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.








Notes

All features in this set of features take the following input arguments:


	simulation_endfloat

	The simulation end time



	neo_spiketrainslist

	A list of Neo spiketrains.





The model must return:


	simulation_endfloat

	The simulation end time



	spiketrainslist

	A list of spiketrains, each spiketrain is a list of the times when
a given neuron spikes.






	Raises

	ImportError – If neo or quantities is not installed.






See also

GeneralNetworkFeatures.preprocess


	GeneralNetworkFeatures.reference_feature

	reference_feature showing the requirements of a feature function.








	
add_features(new_features, labels={})

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
calculate_all_features(*model_results)

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
preprocess(simulation_end, spiketrains)[source]

	Preprossesing of the simulation end time simulation_end and
spiketrains spiketrains from the model, before the features are
calculated.


	Parameters

	
	simulation_end (float) – The simulation end time


	spiketrains (list) – A list of spiketrains, each spiketrain is a list of the times when
a given neuron spikes.






	Returns

	
	simulation_end (float) – The simulation end time


	neo_spiketrains (list) – A list of Neo spiketrains.








	Raises

	ValueError – If simulation_end is np.nan or None.





Notes

This preprocessing makes it so all features get the input
simulation_end and spiketrains.


See also


	uncertainpy.models.Model.run()

	The model run method












	
reference_feature(simulation_end, neo_spiketrains)[source]

	An example of an GeneralNetworkFeature. The feature functions have the
following requirements, and the given parameters must either be
returned by model.run or features.preprocess.


	Parameters

	
	simulation_end (float) – The simulation end time


	neo_spiketrains (list) – A list of Neo spiketrains.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.


	values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.











See also


	uncertainpy.features.GeneralSpikingFeatures.preprocess()

	The GeneralSpikingFeatures preprocess method.



	uncertainpy.models.Model.run()

	The model run method












	
validate(feature_name, *feature_result)

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.























          

      

      

    

  

    
      
          
            
  
GeneralSpikingFeatures

GeneralSpikingFeatures implements the
preprocessing of voltage traces, and locate spikes in the voltage traces,
but does not implement any features in itself.
The preprocess() method
changes the input given to the feature functions,
and as such each spiking feature function has the following input arguments:


	The time array returned by the model simulation.


	An Spikes object (spikes) which contain the spikes found in the model output.


	An info dictionary with info["stimulus_start"] and info["stimulus_end"] set.





API Reference


	
class uncertainpy.features.GeneralSpikingFeatures(new_features=None, features_to_run=u'all', interpolate=None, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0, labels={}, logger_level=u'info')[source]

	Class for calculating spikes of a model, works with single neuron models and
voltage traces.


	Parameters

	
	new_features ({None, callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature. If None, no features are added.
Default is None.


	features_to_run ({“all”, None, str, list of feature names}, optional) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list [], no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all the listed features are
calculated. Default is "all".


	new_utility_methods ({None, list}, optional) – A list of new utility methods. All methods in this class that is not in
the list of utility methods, is considered to be a feature.
Default is None.


	interpolate ({None, “all”, str, list of feature names}, optional) – Which features are irregular, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each irregular feature to create regular results.
If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.


	threshold ({float, int, “auto”}, optional) – The threshold where the model result is considered to have a spike.
If “auto” the threshold is set to the standard variation of the
result. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold. Generally
negative values give the best results. Default is -10.


	extended_spikes (bool, optional) – If the found spikes should be extended further out than the threshold
cuttoff. If True the spikes is considered to start and end where the
derivative equals 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value. Default is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.


	labels (dictionary, optional) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }







	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	spikes (Spikes object) – A Spikes object that contain all spikes.


	threshold ({float, int, "auto"}, optional) – The threshold where the model result is considered to have a spike.
If “auto” the threshold is set to the standard variation of the
result. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold.
Default is -10.


	extended_spikes (bool) – If the found spikes should be extended further out than the threshold
cuttoff.


	trim (bool) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends.


	normalize (bool) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.


	features_to_run (list) – Which features to calculate uncertainties for.


	interpolate (list) – A list of irregular features to be interpolated.


	utility_methods (list) – A list of all utility methods implemented. All methods in this class
that is not in the list of utility methods is considered to be a feature.


	labels (dictionary) – Labels for the axes of each feature, used when plotting.









See also


	uncertainpy.features.Features.reference_feature

	reference_feature showing the requirements of a feature function.



	uncertainpy.features.Spikes

	Class for finding spikes in the model result.








	
add_features(new_features, labels={})

	Add new features.


	Parameters

	
	new_features ({callable, list of callables}) – The new features to add. The feature functions have the requirements
stated in reference_feature.


	labels (dictionary, optional) – A dictionary with the labels for the new features. The keys are the
feature function names and the values are a list of labels for each
axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }











	Raises

	TypeError – Raises a TypeError if new_features  is not callable or list of
callables.





Notes

The features added are not added to features_to_run.
features_to_run must be set manually afterwards.


See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.












	
calculate_all_features(*model_results)

	Calculate all implemented features.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": t, "values": U}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_feature(feature_name, *preprocess_results)

	Calculate feature with feature_name.


	Parameters

	
	feature_name (str) – Name of feature to calculate.


	*preprocess_results – The values returned by preprocess. These values are sent
as input arguments to each feature. By default preprocess returns
the values that model.run() returns, which contains time and
values, and then any number of optional info values.
The implemented features require that info is a single
dictionary with the information stored as key-value pairs.
Certain features require specific keys to be present.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
returns None or numpy.nan.


	values (array_like) – The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated.








	Raises

	TypeError – If feature_name is a utility method.






See also


	uncertainpy.models.Model.run()

	The model run method












	
calculate_features(*model_results)

	Calculate all features in features_to_run.


	Parameters

	*model_results – Variable length argument list. Is the values that model.run()
returns. By default it contains time and values, and then any number of
optional info values.



	Returns

	results – A dictionary where the keys are the feature names
and the values are a dictionary with the time values time and feature
results on values, on the form {"time": time, "values": values}.



	Return type

	dictionary



	Raises

	TypeError – If feature_name is a utility method.





Notes

Checks that the feature returns two values.


See also


	uncertainpy.features.Features.calculate_feature()

	Method for calculating a single feature.












	
calculate_spikes(time, values, threshold=-30, end_threshold=-10, extended_spikes=False, trim=True, normalize=False, min_amplitude=0, min_duration=0)[source]

	Calculating spikes of a model result, works with single neuron models and
voltage traces.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	values (array_like) – Result of the model.


	threshold ({float, int, “auto”}, optional) – The threshold where the model result is considered to have a spike.
If “auto” the threshold is set to the standard variation of the
result. Default is -30.


	end_threshold ({int, float}, optional) – The end threshold for a spike relative to the threshold.
Default is -10.


	extended_spikes (bool, optional) – If the found spikes should be extended further out than the threshold
cuttoff. If True the spikes is considered to start and end where the
derivative equals 0.5. Default is False.


	trim (bool, optional) – If the spikes should be trimmed back from the termination threshold,
so each spike is equal the threshold at both ends. Default is True.


	normalize (bool, optional) – If the voltage traceshould be normalized before the spikes are
found. If normalize is used threshold must be between [0, 1], and
the end_threshold a similar relative value. Default is False.


	min_amplitude ({int, float}, optional) – Minimum height for what should be considered a spike. Default is 0.


	min_duration ({int, float}, optional) – Minimum duration for what should be considered a spike. Default is 0.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it returns None or numpy.nan.


	values (Spikes) – The spikes found in the model results.











See also


	uncertainpy.features.Features.reference_feature()

	reference_feature showing the requirements of a feature function.



	uncertainpy.features.Spikes()

	Class for finding spikes in the model result.












	
features_to_run

	Which features to calculate uncertainties for.


	Parameters

	new_features_to_run ({“all”, None, str, list of feature names}) – Which features to calculate uncertainties for.
If "all", the uncertainties are calculated for all
implemented and assigned features.
If None, or an empty list , no features are
calculated.
If str, only that feature is calculated.
If list of feature names, all listed features are
calculated. Default is "all".



	Returns

	A list of features to calculate uncertainties for.



	Return type

	list










	
implemented_features()

	Return a list of all callable methods in feature, that are not utility
methods, does not starts with “_” and not a method of a general python object.


	Returns

	A list of all callable methods in feature, that are not utility
methods.



	Return type

	list










	
interpolate

	Features that require an interpolation.

Which features are interpolated, meaning they have a varying number of
time points between evaluations. An interpolation is performed on
each interpolated feature to create regular results.


	Parameters

	new_interpolate ({None, “all”, str, list of feature names}) – If "all", all features are interpolated.
If None, or an empty list, no features are interpolated.
If str, only that feature is interpolated.
If list of feature names, all listed features are interpolated.
Default is None.



	Returns

	A list of irregular features to be interpolated.



	Return type

	list










	
labels

	Labels for the axes of each feature, used when plotting.


	Parameters

	new_labels (dictionary) – A dictionary with key as the feature name and the value as a list of
labels for each axis. The number of elements in the list corresponds
to the dimension of the feature. Example:

new_labels = {"0d_feature": ["x-axis"],
              "1d_feature": ["x-axis", "y-axis"],
              "2d_feature": ["x-axis", "y-axis", "z-axis"]
             }














	
preprocess(time, values, info)[source]

	Calculating spikes from the model result.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	values (array_like) – Result of the model.


	info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it returns None or numpy.nan.


	values (Spikes) – The spikes found in the model results.


	info (dictionary) – A dictionary with info[“stimulus_start”] and info[“stimulus_end”].










Notes

Also sets self.values = values, so features have access to self.values if necessary.


See also


	uncertainpy.models.Model.run()

	The model run method



	uncertainpy.features.Spikes()

	Class for finding spikes in the model result.












	
reference_feature(time, spikes, info)[source]

	An example of an GeneralSpikingFeature. The feature functions have the
following requirements, and the input arguments must either be
returned by Model.run or SpikingFeatures.preprocess.


	Parameters

	
	time ({None, numpy.nan, array_like}) – Time values of the model. If no time values it is None or numpy.nan.


	spikes (Spikes) – Spikes found in the model result.


	info (dictionary) – A dictionary with info[“stimulus_start”] and
info[“stimulus_end”] set.






	Returns

	
	time ({None, numpy.nan, array_like}) – Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.


	values (array_like) – The feature results, values. Returns None if there are no feature
results and that evaluation are disregarded.











See also


	uncertainpy.features.GeneralSpikingFeatures.preprocess()

	The GeneralSpikingFeatures preprocess method.



	uncertainpy.models.Model.run()

	The model run method












	
validate(feature_name, *feature_result)

	Validate the results from calculate_feature.

This method ensures each returns time, values.


	Parameters

	
	model_results – Any type of model results returned by run.


	feature_name (str) – Name of the feature, to create better error messages.






	Raises

	
	ValueError – If the model result does not fit the requirements.


	TypeError – If the model result does not fit the requirements.








Notes

Tries to verify that at least, time and values are returned from run.
model_result should follow the format: return time, values, info_1, info_2, ....
Where:


	
	time_feature{None, numpy.nan, array_like}

	Time values, or equivalent, of the feature, if no time values
return None or numpy.nan.







	
	values{None, numpy.nan, array_like}

	The feature results, values must either be regular (have the same
number of points for different paramaters) or be able to be
interpolated. If there are no feature results return
None or numpy.nan instead of values and that evaluation are
disregarded.























          

      

      

    

  

    
      
          
            
  
Data

Uncertainpy stores all results from the uncertainty quantification and
sensitivity analysis in UncertaintyQuantification.data,
as a Data object.
The Data class works similarly to a Python dictionary.
The name of the model or feature is the key,
while the values are DataFeature objects that stores each
statistical metric in in the table below as attributes.
Results can be saved and loaded through
Data.save and Data.load.








	Calculated statistical metric

	Symbol

	Variable





	Model and feature evaluations

	\(U\)

	evaluations



	Model and feature times

	\(t\)

	time



	Mean

	\(\mathbb{E}\)

	mean



	Variance

	\(\mathbb{V}\)

	variance



	5th percentile

	\(P_{5}\)

	percentile_5



	95th percentile

	\(P_{95}\)

	percentile_95



	First order Sobol indices

	\(S\)

	sobol_first



	Total order Sobol indices

	\(S_T\)

	sobol_total



	Average of the first order Sobol indices

	\(\widehat{S}\)

	sobol_first_average



	Average of the total order Sobol indices

	\(\widehat{S}_{T}\)

	sobol_total_average






An example: if we have performed uncertainty quantification of a spiking
neuron model with the number of spikes as one of the features,
we get load the data file and get the variance of the number of spikes by typing:

data = un.Data()
data.load("filename")
variance = data["nr_spikes"].variance






API reference



	Data

	DataFeature











          

      

      

    

  

    
      
          
            
  
Data


	
class uncertainpy.Data(filename=None, backend=u'auto', logger_level=u'info')[source]

	Store the results of each statistical metric calculated from the uncertainty
quantification and sensitivity analysis for each model/features.

Has all standard dictionary methods, such as items, value, contains
and so implemented. Can be indexed as a regular dictionary with
model/feature names as keys and returns a DataFeature object that contains
the data for all statistical metrics for that model/feature.
Additionally it contains information on how the calculations was performed


	Parameters

	
	filename (str, optional) – Name of the file to load data from. If None, no data is loaded.
Default is None.


	backend ({“auto”, “hdf5”, “exdir”}, optional) – The fileformat used to save and load data to/from file. “auto” assumes the
filenamess ends with either “.h5” for HDF5 files or “.exdir” for Exdir files.
If unknown fileextension defaults to saving as HDF5 files. “hdf5” saves
and loads files from HDF5 files. “exdir” saves and loads files from
Exdir files. Default is “auto”.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed
Default logger level is “info”.






	Variables

	
	uncertain_parameters (list) – A list of the uncertain parameters in the uncertainty quantification.


	model_name (str) – Name of the model.


	incomplete (list) – List of all model/features that have missing model/feature evaluations.


	error (list) – List of all model/features that were irregular, but not set to be
interpolated.


	method (str) – A string that describes the method used to perform the uncertainty
quantification.


	data (dictionary) – A dictionary with a DataFeature for each model/feature.


	data_information (list) – List of attributes containing additional information.








Notes

The statistical metrics calculated for each feature and model in Uncertainpy
are:



	evaluations - the results from the model/feature evaluations.


	time - the time of the model/feature.


	mean - the mean of the model/feature.


	variance. - the variance of the model/feature.


	percentile_5 - the 5th percentile of the model/feature.


	percentile_95 - the 95th percentile of the model/feature.


	sobol_first - the first order Sobol indices (sensitivity) of
the model/feature.


	sobol_first_average - the average of the first order Sobol
indices (sensitivity) of the model/feature.


	sobol_total - the total order Sobol indices (sensitivity)
of the model/feature.


	sobol_total_average - the average of the total order Sobol
indices (sensitivity) of the model/feature.








	Raises

	ValueError – If unsupported backend is chosen.






See also

uncertainpy.DataFeature




	
__delitem__(feature)[source]

	Delete data for feature.


	Parameters

	feature (str) – Name of feature.










	
__getitem__(feature)[source]

	Get the DataFeature containing the data for feature.


	Parameters

	feature (str) – Name of feature/model.



	Returns

	The DataFeature containing the data for feature.



	Return type

	DataFeature










	
__iter__()[source]

	Iterate over each feature/model that has not errored.


	Yields

	str – Name of feature/model.










	
__len__()[source]

	Get the number of model/features that have not errored.


	Returns

	The number of model/features that have not errored.



	Return type

	int










	
__setitem__(feature, data)[source]

	Set data for feature. Data must be a DataFeature object.


	Parameters

	
	feature (str) – Name of feature/model.


	data (DataFeature) – DataFeature with the data for feature.






	Raises

	ValueError – If data is not a DataFeature.










	
__str__()[source]

	Convert all data to a readable string.


	Returns

	A human readable string of all stored data.



	Return type

	str










	
add_features(features)[source]

	Add features (which contain no data).


	Parameters

	features ({str, list}) – Name of feature to add, or list of features to add.










	
clear()[source]

	Clear all data.






	
get(k[, d]) → D[k] if k in D, else d.  d defaults to None.

	




	
get_labels(feature)[source]

	Get labels for a feature. If no labels are defined,
returns a list with the correct number of empty strings.


	Parameters

	feature (str) – Name of the model or a feature.



	Returns

	A list of labels for plotting, [x-axis, y-axis, z-axis].
If no labels are defined (labels = []),
returns a list with the correct number of empty strings.



	Return type

	list










	
items() → list of D's (key, value) pairs, as 2-tuples

	




	
iteritems() → an iterator over the (key, value) items of D

	




	
iterkeys() → an iterator over the keys of D

	




	
itervalues() → an iterator over the values of D

	




	
keys() → list of D's keys

	




	
load(filename)[source]

	Load data from a HDF5 or Exdir file with name filename.


	Parameters

	filename (str) – Name of the file to load data from.



	Raises

	
	ImportError – If h5py is not installed.


	ImportError – If Exdir is not installed.













	
ndim(feature)[source]

	Get the number of dimensions of a feature.


	Parameters

	feature (str) – Name of the model or a feature.



	Returns

	The number of dimensions of the model/feature result. Returns None
if the feature has no evaluations or only contains nan.



	Return type

	int, None










	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.






	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.






	
remove_only_invalid_features()[source]

	Remove all features that only have invalid results (NaN).






	
save(filename)[source]

	Save data to a HDF5 or Exdir file with name filename.


	Parameters

	filename (str) – Name of the file to load data from.



	Raises

	
	ImportError – If h5py is not installed.


	ImportError – If Exdir is not installed.













	
seed

	Seed used in the calculations.


	Parameters

	new_seed ({None, int}) – Seed used in the calculations.
If None, converted to “”.



	Returns

	seed – Seed used in the calculations.



	Return type

	{int, str}










	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	




	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v






	
values() → list of D's values

	











          

      

      

    

  

    
      
          
            
  
DataFeature


	
class uncertainpy.DataFeature(name, evaluations=None, time=None, mean=None, variance=None, percentile_5=None, percentile_95=None, sobol_first=None, sobol_first_average=None, sobol_total=None, sobol_total_average=None, labels=[])[source]

	Store the results of each statistical metric calculated from the uncertainty
quantification and sensitivity analysis for a single model/feature.

The statistical metrics can be retrieved as attributes. Additionally, DataFeature
implements all standard dictionary methods, such as items, value, contains
and so implemented. This means it can be indexed as a regular dictionary
with the statistical metric names as keys and returns the values for that
statistical metric.


	Parameters

	
	name (str) – Name of the model/feature.


	evaluations ({None, array_like}, optional.) – Feature or model result.
Default is None.


	time ({None, array_like}, optional.) – Time evaluations for feature or model.
Default is None.


	mean ({None, array_like}, optional.) – Mean of the feature or model results.
Default is None.


	variance ({None, array_like}, optional.) – Variance of the feature or model results.
Default is None.


	percentile_5 ({None, array_like}, optional.) – 5 percentile of the feature or model results.
Default is None.


	percentile_95 ({None, array_like}, optional.) – 95 percentile of the feature or model results.
Default is None.


	sobol_first ({None, array_like}, optional.) – First order sensitivity of the feature or model results.
Default is None.


	sobol_first_average ({None, array_like}, optional.) – First order sensitivity of the feature or model results.
Default is None.


	sobol_total ({None, array_like}, optional.) – Total effect sensitivity of the feature or model results.
Default is None.


	sobol_total_average ({None, array_like}, optional.) – Average of the total effect sensitivity of
the feature or model results.
Default is None.


	labels (list, optional.) – A list of labels for plotting, [x-axis, y-axis, z-axis]
Default is [].






	Variables

	
	name (str) – Name of the model/feature.


	evaluations ({None, array_like}) – Feature or model output.


	time ({None, array_like}) – Time values for feature or model.


	mean ({None, array_like}) – Mean of the feature or model results.


	variance ({None, array_like}) – Variance of the feature or model results.


	percentile_5 ({None, array_like}) – 5 percentile of the feature or model results.


	percentile_95 ({None, array_like}) – 95 percentile of the feature or model results.


	sobol_first ({None, array_like}) – First order Sobol indices (sensitivity) of the feature or model results.


	sobol_first_average ({None, array_like}) – Average of the first order Sobol indices of the feature or model results.


	sobol_total ({None, array_like}) – Total order Sobol indices (sensitivity) of the feature or model results.


	sobol_total_average ({None, array_like}) – Average of the total order Sobol indices of the feature or model results.


	labels (list) – A list of labels for plotting, [x-axis, y-axis, z-axis].








Notes

The statistical metrics calculated in Uncertainpy are:



	evaluations - the results from the model/feature evaluations.


	time - the time of the model/feature.


	mean - the mean of the model/feature.


	variance. - the variance of the model/feature.


	percentile_5 - the 5th percentile of the model/feature.


	percentile_95 - the 95th percentile of the model/feature.


	sobol_first - the first order Sobol indices (sensitivity) of
the model/feature.


	sobol_first_average - the average of the first order Sobol
indices (sensitivity) of the model/feature.


	sobol_total - the total order Sobol indices (sensitivity)
of the model/feature.


	sobol_total_average - the average of the total order Sobol
indices (sensitivity) of the model/feature.








	
__delitem__(statistical_metric)[source]

	Delete data for statistical_metric (set to None).


	Parameters

	statistical_metric (str) – Name of the statistical metric.










	
__getitem__(statistical_metric)[source]

	Get the data for statistical_metric.


	Parameters

	statistical_metric (str) – Name of the statistical metric.



	Returns

	The data for statistical_metric.



	Return type

	{array_like, None}










	
__iter__()[source]

	Iterate over each statistical metric with data.


	Yields

	str – Name of the statistical metric.










	
__len__()[source]

	Get the number of data types with data.


	Returns

	The number of data types with data.



	Return type

	int










	
__setitem__(statistical_metric, data)[source]

	Set the data for the statistical metric.


	Parameters

	
	statistical_metric (str) – Name of the statistical metric.


	data ({array_like, None}) – The data for the statistical metric.













	
clear() → None.  Remove all items from D.

	




	
get(k[, d]) → D[k] if k in D, else d.  d defaults to None.

	




	
get_metrics()[source]

	Get the names of all statistical metrics that contain data (not None).


	Returns

	List of the names of all statistical metric that contain data.



	Return type

	list










	
items() → list of D's (key, value) pairs, as 2-tuples

	




	
iteritems() → an iterator over the (key, value) items of D

	




	
iterkeys() → an iterator over the keys of D

	




	
itervalues() → an iterator over the values of D

	




	
keys() → list of D's keys

	




	
ndim()[source]

	Get the number of dimensions the data of a data type. Returns None if no
evaluations or all evaluations contain numpy.nan.


	Parameters

	feature (str) – Name of the model or a feature.



	Returns

	The number of dimensions of the data of the data type.



	Return type

	int










	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.






	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.






	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	




	
update([E, ]**F) → None.  Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v






	
values() → list of D's values

	











          

      

      

    

  

    
      
          
            
  
Distribution

Functions (that work as closures) used to set the distribution of a
parameter to an interval around their original value through for example
set_all_distributions().
An example:

# Define a parameter list
parameter_list = [["parameter_1", -67],
                  ["parameter_2", 22]]

# Create the parameters
parameters = un.Parameters(parameter_list)

# Set all parameters to have a uniform distribution
# within a 5% interval around their fixed value
parameters.set_all_distributions(un.uniform(0.05))






API Reference


	
uncertainpy.uniform(interval)[source]

	A closure that creates a function that takes a parameter as input and
returns a uniform distribution with interval around parameter.


	Parameters

	interval (int, float) – The interval of the uniform distribution around parameter.



	Returns

	distribution – A function that takes parameter as input and returns a
uniform distribution with interval around this parameter.



	Return type

	function





Notes

This function ultimately calculates:

cp.Uniform(parameter - abs(interval/2.*parameter),
           parameter + abs(interval/2.*parameter)).










	
uncertainpy.normal(interval)[source]

	A closure that creates a function that takes a parameter as input and
returns a Gaussian distribution with standard deviation interval*parameter
around parameter.


	Parameters

	interval (int, float) – The interval of the standard deviation interval*parameter for the
Gaussian distribution.



	Returns

	distribution – A function that takes a parameter as input and
returns a Gaussian distribution standard deviation interval*parameter.



	Return type

	function





Notes

This function ultimately calculates:

cp.Normal(parameter, abs(interval*parameter))















          

      

      

    

  

    
      
          
            
  
Plotting

PlotUncertainty creates plot of the data
from the uncertainty quantification and sensitivity analysis.
PlotUncertainpy plots the results for all zero and one dimensional statistical
metrics, and some of the two dimensional statistical metrics
It is intended as a quick way to get an overview of the data, and does not
create publication ready plots.
Custom plots of the data can easily be created by retrieving the results from
the Data class.


API Reference


	
class uncertainpy.plotting.PlotUncertainty(filename=None, folder=u'figures/', figureformat=u'.png', logger_level=u'info')[source]

	Plotting the results from the uncertainty quantification and sensitivity
analysis.


	Parameters

	
	filename ({None, str}, optional) – The name of the data file. If given the file is loaded. If None, no file
is loaded. Default is None.


	folder (str, optional) – The folder where to save the plots. Creates a new folder if it does not
exist. Default is “figures/”.


	figureformat (str, optional) – The format to save the plots in. Given as “.xxx”. All formats supported
by Matplotlib are available. Default is “.png”,


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed
Default logger level is “info”.






	Variables

	
	folder (str) – The folder where to save the plots.


	figureformat (str, optional) – The format to save the plots in. Given as “.xxx”. All formats
supported by Matplotlib are available.


	data (Data) – A data object that contains the results from the uncertainty quantification.
Contains all model and feature values, as well as all calculated
statistical metrics.









	
all_evaluations(foldername=u'evaluations')[source]

	Plot all evaluations for all model and features.


	Parameters

	foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “evaluations”.










	
attribute_feature_1d(feature=None, attribute=u'mean', attribute_name=u'mean', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot a 1 dimensional attribute for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	attribute ({“mean”, “variance”}, optional) – Attribute to plot, either the mean or variance. Default is “mean”.


	attribute_name (str) – Name of the attribute, used as title and name of the plot.
Default is “mean”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.


	ValueError – If the attribute is not a supported attribute, either “mean” or
“variance”.













	
attribute_feature_2d(feature=None, attribute=u'mean', attribute_name=u'mean', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot a 2 dimensional attribute for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	attribute ({“mean”, “variance”}, optional) – Attribute to plot, either the mean or variance. Default is “mean”.


	attribute_name (str) – Name of the attribute, used as title and name of the plot.
Default is “mean”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 2 dimensional.


	ValueError – If the attribute is not a supported attribute, either “mean” or
“variance”.













	
average_sensitivity(feature, sensitivity=u'first', hardcopy=True, show=False)[source]

	Plot the average of the sensitivity for a specific model/feature.


	Parameters

	
	feature ({None, str}) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.


	ValueError – If feature does not exist.













	
average_sensitivity_all(sensitivity=u'first', hardcopy=True, show=False)[source]

	Plot the average of the sensitivity for all model/features.


	Parameters

	
	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
average_sensitivity_grid(sensitivity=u'first', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the average of the sensitivity for all model/features in
their own plots in the same figure.


	Parameters

	
	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
convert_sensitivity(sensitivity)[source]

	Convert a sensitivity str to the correct sensitivity attribute, and a
full name.


	Parameters

	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices.



	Returns

	
	sensitivity (str) – Name of the sensitivity attribute. Either sobol_first”,
“sobol_total”, or the unchanged input.


	full_text (str) – Complete name of the sensitivity. Either “”, or
“first order Sobol indices” or “total order Sobol indices”.















	
evaluations(feature=None, foldername=u'', **plot_kwargs)[source]

	Plot all evaluations for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “featurename_evaluations”.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	NotImplementedError – If the model/feature have more than 2 dimensions.


	AttributeError – If the dimensions of the evaluations is not valid.













	
evaluations_0d(feature=None, foldername=u'', **plot_kwargs)[source]

	Plot all 0D evaluations for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist.Default folder is named “featurename_evaluations”.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the evaluations are not 0 dimensional.













	
evaluations_1d(feature=None, foldername=u'', **plot_kwargs)[source]

	Plot all 1D evaluations for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named “featurename_evaluations”.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the evaluations are not 1 dimensional.













	
evaluations_2d(feature=None, foldername=u'', **plot_kwargs)[source]

	Plot all 2D evaluations for a specific model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	foldername (str, optional) – Name of folder where to save all plots. The folder is created
if it does not exist. Default folder is named
“featurename_evaluations”.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the evaluations are not 2 dimensional.













	
feature_0d(feature, sensitivity=u'first', hardcopy=True, show=False, max_legend_size=5)[source]

	Plot all attributes (mean, variance, p_05, p_95 and sensitivity of it
exists) for a 0 dimensional model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. If None, no sensitivity is plotted. Default is
“first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	max_legend_size (int, optional) – The max number of legends in a row. Default is 5.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 0 dimensional.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
“total” or None.













	
features_0d(sensitivity=u'first', hardcopy=True, show=False)[source]

	Plot the results for all 0 dimensional model/features.


	Parameters

	
	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
features_1d(sensitivity=u'first')[source]

	Plot all data for all 1 dimensional model/features.

For each model/feature plots mean_1d, variance_1d,
mean_variance_1d, and prediction_interval_1d. If sensitivity
also plot sensitivity_1d, sensitivity_1d_combined, and
sensitivity_1d_grid.


	Parameters

	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. If None, no sensitivity is plotted. Default is
“first”.



	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
“total” or None.









See also

uncertainpy.plotting.PlotUncertainty.mean_1d(), uncertainpy.plotting.PlotUncertainty.variance_1d(), uncertainpy.plotting.PlotUncertainty.mean_variance_1d(), uncertainpy.plotting.PlotUncertainty.prediction_interval_1d(), uncertainpy.plotting.PlotUncertainty.sensitivity_1d(), uncertainpy.plotting.PlotUncertainty.sensitivity_1d_combined(), uncertainpy.plotting.PlotUncertainty.sensitivity_1d_grid()








	
features_2d()[source]

	Plot all implemented plots for all 2 dimensional model/features.
For each model/feature plots mean_2d, and variance_2d.


	Raises

	ValueError – If a Datafile is not loaded.










	
folder

	The folder where to save all plots.


	Parameters

	new_folder (str) – Name of new folder where to save all plots. The folder is created
if it does not exist.










	
load(filename)[source]

	Load data from a HDF5 or Exdir file with name filename.


	Parameters

	filename (str) – Name of the file to load data from.










	
mean_1d(feature, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the mean for a specific 1 dimensional model/feature.


	Parameters

	
	feature (str) – The name of the model/feature.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.













	
mean_2d(feature, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the mean for a specific 2 dimensional model/feature.


	Parameters

	
	feature (str) – The name of the model/feature.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 2 dimensional.













	
mean_variance_1d(feature=None, new_figure=True, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the mean and variance for a specific 1 dimensional model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.













	
plot(condensed=True, sensitivity=u'first')[source]

	Plot the subset of data that shows all information in the most concise
way, with the chosen sensitivity.


	Parameters

	
	condensed (bool, optional) – If the results should be plotted in the most concise way. If not, all
plots are created. Default is True.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. If None, no sensitivity is plotted.
Default is “first”.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
“total”, or None.













	
plot_all(sensitivity=u'first')[source]

	Plot the results for all model/features, with the chosen sensitivity.


	Parameters

	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”, None}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. If None, no sensitivity is plotted.
Default is “first”.



	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
“total”, or None.













	
plot_all_sensitivities()[source]

	Plot the results for all model/features, with all sensitivities.


	Raises

	ValueError – If a Datafile is not loaded.










	
plot_condensed(sensitivity=u'first')[source]

	Plot the subset of data that shows all information in the most concise
way, with the chosen sensitivity.


	Parameters

	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. If None, no sensitivity is plotted.
Default is “first”.



	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
“total”, or None.













	
prediction_interval_1d(feature=None, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the prediction interval for a specific 1 dimensional model/feature.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.













	
sensitivity_1d(feature=None, sensitivity=u'first', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the sensitivity for a specific 1 dimensional model/feature. The
Sensitivity for each parameter is plotted in sepearate figures.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
sensitivity_1d_combined(feature=None, sensitivity=u'first', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the sensitivity for a specific 1 dimensional model/feature. The
Sensitivity for each parameter is plotted in the same plot.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
sensitivity_1d_grid(feature=None, sensitivity=u'first', hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the sensitivity for a specific 1 dimensional model/feature. The
Sensitivity for each parameter is plotted in the same figure, but
separate plots.


	Parameters

	
	feature ({None, str}, optional) – The name of the model/feature. If None, the name of the model is
used. Default is None.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – Which Sobol indices to plot. “sobol_first” and “first” is the first
order Sobol indices, while “sobol_total” and “total” are the total
order Sobol indices. Default is “first”.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.


	ValueError – If sensitivity is not one of “sobol_first”, “first”, “sobol_total”,
or “total”.













	
variance_1d(feature, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the variance for a specific 1 dimensional model/feature.


	Parameters

	
	feature (str) – The name of the model/feature.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 1 dimensional.













	
variance_2d(feature, hardcopy=True, show=False, **plot_kwargs)[source]

	Plot the variance for a specific 2 dimensional model/feature.


	Parameters

	
	feature (str) – The name of the model/feature.


	hardcopy (bool, optional) – If the plot should be saved to file. Default is True.


	show (bool, optional) – If the plot should be shown on screen. Default is False.


	**plot_kwargs, optional – Matplotlib plotting arguments.






	Raises

	
	ValueError – If a Datafile is not loaded.


	ValueError – If the model/feature is not 2 dimensional.






















          

      

      

    

  

    
      
          
            
  
Logging

Uncertainpy uses the logging module to log to both file and to screen.
All loggers are named
class_instance.__module__ + "." +  class_instance.__class__.__name__.
An example, the logger in a Data```object is named
``uncertainpy.data.Data.
If the the module name does not start with “uncertainpy.”, “uncertainpy.”
as added as a prefix.

A file handler is only added to the logging by UncertaintyQuantification.
If level is set to None, no logging in Uncertainpy is set up and the logging can
be customized as necessary by using the logging module.
This should only be done if you know what you are doing. Be warned that
logging is performed in parallel. If the MultiprocessLoggingHandler() is not
used when trying to write to a single log file, Uncertainpy will hang. This
happens because several processes try to log to the same file.

Logging can easily be added to custom models and features by:

# Import the functions and libraries needed
from uncertainpy.utils import create_logger
import logging

# Set up a logger. This adds a screen handlers to the "uncertainpy" logger
# if it does not already exist
# All log messages with level "info" or higher will be logged.
setup_logger("uncertainpy.logger_name", level="info")

# Get the logger recently created
logger = logging.getLogger("uncertainpy.logger_name")

# Log a message with the level "info".
logger.info("info logging message here")





Note that if you want to use the logger setup in Uncertainpy, the name of your
loggers should start with uncertainpy..


API Reference


	
class uncertainpy.utils.logger.MultiprocessLoggingHandler(filename, mode)[source]

	Adapted from:
https://stackoverflow.com/questions/641420/how-should-i-log-while-using-multiprocessing-in-python


	
close()[source]

	Tidy up any resources used by the handler.

This version removes the handler from an internal map of handlers,
_handlers, which is used for handler lookup by name. Subclasses
should ensure that this gets called from overridden close()
methods.






	
emit(record)[source]

	Do whatever it takes to actually log the specified logging record.

This version is intended to be implemented by subclasses and so
raises a NotImplementedError.






	
setFormatter(fmt)[source]

	Set the formatter for this handler.










	
class uncertainpy.utils.logger.MyFormatter(fmt=u'%(levelno)s: %(msg)s')[source]

	The logging formater.


	
format(record)[source]

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.










	
class uncertainpy.utils.logger.TqdmLoggingHandler(stream=None)[source]

	Set logging so logging to  stream works with Tqdm,
logging now uses tqdm.write.


	
emit(record)[source]

	Emit a record.

If a formatter is specified, it is used to format the record.
The record is then written to the stream with a trailing newline.  If
exception information is present, it is formatted using
traceback.print_exception and appended to the stream.  If the stream
has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.










	
uncertainpy.utils.logger.add_file_handler(name=u'uncertainpy', filename=u'uncertainpy.log')[source]

	Add file handler to logger with name, if no file handler already
exists for the given logger.


	Parameters

	
	name (str, optional) – Name of the logger. Default name is “uncertainpy”.


	filename (str) – Name of the logfile. If None, no logging to file is performed. Default is
“uncertainpy.log”.













	
uncertainpy.utils.logger.add_screen_handler(name=u'uncertainpy')[source]

	Adds a logging to console (a console handler) to logger with name, if no screen handler already
exists for the given logger.


	Parameters

	name (str, optional) – Name of the logger. Default name is “uncertainpy”.










	
uncertainpy.utils.logger.get_logger(class_instance)[source]

	Get a logger with name given from class_instance:
class_instance.__module__ + "." +  class_instance.__class__.__name__.


	Parameters

	class_instance (instance) – Class instance used to get the logger name.



	Returns

	logger – The logger object.



	Return type

	Logger object










	
uncertainpy.utils.logger.has_handlers(logger)[source]

	See if this logger has any handlers configured.

Loop through all handlers for this logger and its parents in the
logger hierarchy. Return True if a handler was found, else False.
Stop searching up the hierarchy whenever a logger with the “propagate”
attribute set to zero is found - that will be the last logger which
is checked for the existence of handlers.


	Returns

	True if the logger or any parent logger has handlers attached.



	Return type

	bool










	
uncertainpy.utils.logger.setup_logger(name, level=u'info')[source]

	Create a logger with name.


	Parameters

	
	name (str) – Name of the logger


	level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logger is set up. Default
logger level is info.













	
uncertainpy.utils.logger.setup_module_logger(class_instance, level=u'info')[source]

	Create a logger with a name from the current class. “uncertainpy.” is added
to the beginning of the name if the module name does not start with
“uncertainpy.”. If no handlers, adds handlers to the logger named uncertainpy.


	Parameters

	
	class_instance (instance) – Class instance used to set the logger name.
class_instance.__module__ + "." +  class_instance.__class__.__name__.


	level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logger level is set. Setting
logger level overwrites the logger level set from configuration file.
Default logger level is “info”.


















          

      

      

    

  

    
      
          
            
  
Utilities

Various utility functions.


API Reference


	
uncertainpy.utils.utility.contains_nan(values)[source]

	Checks if None or numpy.nan exists in values. Returns True if
any there are at least one occurrence of None or numpy.nan.


	Parameters

	values (array_like, list, number) – values where to check for occurrences of None or np.nan.
Can be irregular and have any number of nested elements.



	Returns

	True if values has at least one occurrence of None or
numpy.nan.



	Return type

	bool










	
uncertainpy.utils.utility.is_regular(values)[source]

	Test if values is regular or not, meaning it has a varying length of
nested elements.


	Parameters

	values (array_like, list, number) – values to check if it is regular or not, meaning it has a varying
length of nested elements.



	Returns

	True if the feature is regular or False if the feature is irregular.



	Return type

	bool





Notes

Does not ignore numpy.nan, so [numpy.nan, [1, 2]] returns False.






	
uncertainpy.utils.utility.lengths(values)[source]

	Get the lengths of a list and all its sublists.


	Parameters

	values (list) – List where we want to find the lengths of the list and all sublists.



	Returns

	A list with the lengths of the list and all sublists.



	Return type

	list










	
uncertainpy.utils.utility.none_to_nan(values)[source]

	Converts None values in values to np.nan.


	Parameters

	values (array_like, list, number) – Values where to convert occurrences of None converted to np.nan.
Can be irregular and have any number of nested elements.



	Returns

	values – values with all occurrences of None converted to np.nan.



	Return type

	array_like, list, number










	
uncertainpy.utils.utility.set_nan(values, index)[source]

	Set the index of a arbitrarly nested list to nan


	Parameters

	
	values (array_like, list, number) – Values where to set  index to numpy.nan. Can be irregular and have
any number of nested elements.


	index (array_like, list, number) – Index where to set values to numpy.nan.


















          

      

      

    

  

    
      
          
            
  
Core

This module contains the classes that are responsible for running the model and
calculate features of the model, both in parallel (RunModel and
Parallel), as well as the class for performing the
uncertainty calculations (UncertaintyCalculations).
It also contains the base classes that are responsible for setting and updating
parameters, models and features across classes (Base and ParameterBase).



	UncertaintyCalculations

	Base and ParameterBase

	Parallel

	RunModel









          

      

      

    

  

    
      
          
            
  
UncertaintyCalculations

UncertaintyCalculations is the class responsible for
performing the uncertainty calculations.
Here we explain how they are performed as well as well as which options the user
have to customize the calculations
An insight into how the calculations are performed
is not required to use Uncertainpy.
In most cases, the default settings works fine.
In addition to the customization options shown below,
Uncertainpy has support for implementing entirely custom
uncertainty quantification and sensitivity analysis methods.
This is only recommended for expert users,
as knowledge of both Uncertainpy and uncertainty quantification is needed.


Quasi-Monte Carlo method

To use the quasi-Monte Carlo method, we call
quantify() with
method="mc", and the optional argument nr_mc_samples:

data = UQ.quantify(
    method="mc",
    nr_mc_samples=10**4,
)





By default, the quasi-Monte Carlo method quasi-randomly draws 10000
parameter samples from the joint multivariate probability distribution of the
parameters \(\rho_{\boldsymbol{Q}}\) using Hammersley sampling (Hammersley, 1960 [http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1960.tb42846.x/pdf]).
As the name indicates, the number of samples is specified by the
nr_mc_samples argument.
The model is evaluated for each of these parameter samples,
and features are calculated for each model evaluation (when applicable).
To speed up the calculations,
Uncertainpy uses the multiprocess Python package
(McKerns et al., 2012 [https://arxiv.org/pdf/1202.1056.pdf]) to perform this step in parallel.
When model and feature calculations are done,
Uncertainpy calculates the mean, variance,
and 5th and 95th percentile (which gives the 90% prediction interval)
for the model output as well as for each feature.




Polynomial chaos expansions

To use polynomial chaos expansions we use quantify()
with the argument method="pc",
which takes a set of optional arguments (default are values specified):

data = UQ.quantify(
    method="pc",
    pc_method="collocation",
    rosenblatt=False,
    polynomial_order=4,
    nr_collocation_nodes=None,
    quadrature_order=None,
    nr_pc_mc_samples=10**4,
)





As previously mentioned, Uncertainpy allows the user to select between point
collocation (pc_method="collocation")
and pseudo-spectral projections (pc_method="spectral").
The goal is to create separate polynomial chaos expansions hat{U} for the
model and each feature.
In both methods,
Uncertainpy creates the orthogonal polynomial \(\boldsymbol{\phi}_n\) using
\(\rho_{\boldsymbol{Q}}\) and the three-term recurrence relation if available,
otherwise the discretized Stieltjes method (Stieltjes, 1884 [http://eudml.org/doc/80911]) is used.
Uncertainpy uses a third order polynomial expansion,
changed with polynomial_order.
The polynomial \(\boldsymbol{\phi}_n\) is shared between the model and all features,
since they have the same uncertain input parameters,
and therefore the same \(\rho_{\boldsymbol{Q}}\).
Only the polynomial coefficients \(c_n\) differ between the model and each feature.

The two polynomial chaos methods differ in terms of how they calculate \(c_n\).
For point collocation Uncertainpy uses \(2(N_p + 1)\) collocation nodes,
as recommended by (Hosder et al., 2007 [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.610&rep=rep1&type=pdf]),
where N_p is the number of polynomial chaos expansion factors.
The number of collocation nodes can be customized with
nr_collocation_nodes,
but the new number of nodes must be chosen carefully.
The collocation nodes are sampled from \(\rho_{\boldsymbol{Q}}\) using
Hammersley sampling (Hammersley, 1960 [http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1960.tb42846.x/pdf]).
The model and features are calculated for each of the collocation nodes.
As with the quasi-Monte Carlo method, this step is performed in parallel.
The polynomial coefficients \(c_n\) are calculated
using Tikhonov regularization (Rifkin and Lipert, 2007 [http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf]) from the model and feature
results.

For the pseudo-spectral projection,
Uncertainpy chooses nodes and weights using a quadrature scheme,
instead of choosing nodes from \(\rho_{\boldsymbol{Q}}\).
The quadrature scheme used is Leja quadrature with a Smolyak sparse grid
(Narayan and Jakeman, 2014 [http://epubs.siam.org/doi/pdf/10.1137/140966368]; Smolyak, 1963 [https://www.scopus.com/record/display.uri?eid=2-s2.0-0001048298&origin=inward&txGid=909fc4b912013bd67236ad5d9d593074]).
The Leja quadrature is of order two greater than the polynomial
order,
but can be changed with quadrature_order.
The model and features are calculated for each of the quadrature nodes.
As before, this step is performed in parallel.
The polynomial coefficients \(c_n\) are then calculated from the quadrature nodes,
weights, and model and feature results.

When Uncertainpy has derived \(\hat{U}\) for the model and features,
it uses \(\hat{U}\) to compute the mean, variance,
and the first and total order Sobol indices.
The first and total order Sobol indices are also summed and normalized.
Finally, Uncertainpy uses \(\hat{U}\) as a surrogate model,
and performs a quasi-Monte Carlo method with Hammersley sampling and
nr_pc_mc_samples=10**4  samples to find the
5th and 95th percentiles.

If the model parameters have a dependent joint multivariate distribution,
the Rosenblatt transformation must be used by setting
rosenblatt=True.
To perform the transformation Uncertainpy chooses
\(\rho_{\boldsymbol{R}}\) to be a multivariate independent normal distribution,
which is used instead of \(\rho_{\boldsymbol{Q}}\) to perform the polynomial chaos expansions.
Both the point collocation method and the pseudo-spectral method are performed
as described above.
The only difference is that we use \(\rho_{\boldsymbol{R}}\) instead of \(\rho_{\boldsymbol{Q}}\),
and use the Rosenblatt transformation to transform the selected nodes
from \(\boldsymbol{R}\) to \(\boldsymbol{Q}\), before they are used in the model evaluation.




API Reference


	
class uncertainpy.core.UncertaintyCalculations(model=None, parameters=None, features=None, create_PCE_custom=None, custom_uncertainty_quantification=None, CPUs=u'max', logger_level=u'info')[source]

	Perform the calculations for the uncertainty quantification and
sensitivity analysis.

This class performs the calculations for the uncertainty quantification and
sensitivity analysis of the model and features. It implements both
quasi-Monte Carlo methods and polynomial chaos expansions using either
point collocation or pseudo-spectral method. Both of the polynomial chaos
expansion methods have support for the rosenblatt transformation to handle
dependent variables.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}, optional) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, …], list of Parameter instances, list [[name, value or Chaospy distribution], …], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],…],}) – List or dictionary of the parameters that should be created.
On the form parameters =



	{name_1: parameter_object_1, name: parameter_object_2, ...}


	{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}


	[parameter_object_1, parameter_object_2, ...],


	[[name_1, value_1 or Chaospy distribution], ...].


	[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]









	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.
Default is None.


	create_PCE_custom (callable, optional) – A custom method for calculating the polynomial chaos approximation.
For the requirements of the function see
UncertaintyCalculations.create_PCE_custom. Overwrites existing
create_PCE_custom method.
Default is None.


	custom_uncertainty_quantification (callable, optional) – A custom method for calculating uncertainties.
For the requirements of the function see
UncertaintyCalculations.custom_uncertainty_quantification.
Overwrites existing custom_uncertainty_quantification method.
Default is None.


	CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the model and features.
If None, no multiprocessing is used.
If “max”, the maximum number of CPUs on the computer
(multiprocess.cpu_count()) is used.
Default is “max”.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed.
Default logger level is “info”.






	Variables

	
	model (Model or Model subclass) – The model to perform uncertainty quantification on.


	parameters (Parameters) – The uncertain parameters.


	features (Features or Features subclass) – The features of the model to perform uncertainty quantification on.


	runmodel (RunModel) – Runmodel object responsible for evaluating the model and calculating features.









See also

uncertainpy.features.Features, uncertainpy.Parameter, uncertainpy.Parameters, uncertainpy.models.Model, uncertainpy.core.RunModel


	uncertainpy.models.Model.run

	Requirements for the model run function.








	
analyse_PCE(U_hat, distribution, data, nr_samples=10000)[source]

	Calculate the statistical metrics from the polynomial chaos
approximation.


	Parameters

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.


	nr_samples (int, optional) – Number of samples for the Monte Carlo sampling of the polynomial
chaos approximation.
Default is 10**4.






	Returns

	data – The data parameter given as input with the statistical metrics added.



	Return type

	Data





Notes

The data parameter should contain (but not necessarily) the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored







When returned data additionally contains:



	data["model/features"].mean


	data["model/features"].variance


	data["model/features"].percentile_5


	data["model/features"].percentile_95


	data["model/features"].sobol_first, if more than 1 parameter


	data["model/features"].sobol_total, if more than 1 parameter


	data["model/features"].sobol_first_average, if more than 1 parameter


	data["model/features"].sobol_total_average, if more than 1 parameter








See also

uncertainpy.Data()








	
average_sensitivity(data, sensitivity=u'sobol_first')[source]

	Calculate the average of the sensitivities for the model and all
features and add them to data. Ignores any occurrences of numpy.NaN.


	Parameters

	
	data (Data) – A data object with all model and feature evaluations, as well as all
calculated statistical metrics.


	sensitivity ({“sobol_first”, “first”, “sobol_total”, “total”}, optional) – The sensitivity to normalize and sum. “sobol_first” and “1” are
for the first order Sobol indice while “sobol_total” and “t” is
for the total order Sobol indices. Default is “sobol_first”.






	Returns

	data – The data object with the average of the sensitivities for
the model and all features added.



	Return type

	Data






See also

uncertainpy.Data()








	
convert_uncertain_parameters(uncertain_parameters=None)[source]

	Converts uncertain_parameter(s) to a list of uncertain parameter(s), and
checks if it is a legal set of uncertain parameter(s).


	Parameters

	uncertain_parameters ({None, str, list}, optional) – The name(s) of the uncertain parameters to use. If None, a list of
all uncertain parameters are returned.
Default is None.



	Returns

	uncertain_parameters – A list with the name of all uncertain parameters.



	Return type

	list



	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.






See also

uncertainpy.Parameters()








	
create_PCE_collocation(uncertain_parameters=None, polynomial_order=4, nr_collocation_nodes=None, allow_incomplete=True)[source]

	Create the polynomial approximation U_hat using pseudo-spectral
projection.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose. If None,
nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.






	Returns

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.








	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

The returned data should contain (but not necessarily) the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored







The model and feature do not necessarily give results for each
node. The collocation method is robust towards missing values as long as
the number of results that remain is high enough.

The polynomial chaos expansion method for uncertainty quantification
approximates the model with a polynomial that follows specific
requirements. This polynomial can be used to quickly calculate the
uncertainty and sensitivity of the model.

To create the polynomial chaos expansion we first find the polynomials
using the three-therm recurrence relation if available, otherwise the
discretized Stieltjes method is used. Then we use point collocation
to find the expansion coefficients for the model and each feature of the
model.

In point collocation we require the polynomial approximation to be equal
the model at a set of collocation nodes. This results in a set of linear
equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from
the distribution. We evaluate the model and each feature in parallel,
and solve the resulting set of linear equations with Tikhonov
regularization.


See also

uncertainpy.Data(), uncertainpy.Parameters()








	
create_PCE_collocation_rosenblatt(uncertain_parameters=None, polynomial_order=4, nr_collocation_nodes=None, allow_incomplete=True)[source]

	Create the polynomial approximation U_hat using pseudo-spectral
projection and the Rosenblatt transformation. Works for dependend
uncertain parameters.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose. If None,
nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.






	Returns

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.








	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

The returned data should contain (but not necessarily) the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method







The model and feature do not necessarily give results for each node. The
collocation method is robust towards missing values as long as the number
of results that remain is high enough.

The polynomial chaos expansion method for uncertainty quantification
approximates the model with a polynomial that follows specific
requirements. This polynomial can be used to quickly calculate the
uncertainty and sensitivity of the model.

We use the Rosenblatt transformation to transform from dependent to
independent variables before we create the polynomial chaos expansion.
We first find the polynomials from the independent distributions using
the three-therm recurrence relation if available, otherwise the
discretized Stieltjes method is used. Then we use the point collocation
with the Rosenblatt transformation to find the expansion coefficients
for the model and each feature of the model.

In point collocation we require the polynomial approximation to be equal
the model at a set of collocation nodes. This results in a set of linear
equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from
the independent distribution. We then transform the nodes using the
Rosenblatte transformation and evaluate the model and each
feature in parallel. We solve the resulting set of linear equations
with Tikhonov regularization.


See also

uncertainpy.Data(), uncertainpy.Parameters()








	
create_PCE_custom

	A custom method for calculating the polynomial chaos approximation.
Must follow the below requirements.


	Parameters

	
	self (UncertaintyCalculation) – An explicit self is required as the first argument.
self can be used inside the custom function.


	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	**kwargs – Any number of optional arguments.






	Returns

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.








	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

This method can be implemented to create a custom method to calculate
the polynomial chaos expansion. The method must calculate and return
the return arguments described above.

The returned data should contain (but not necessarily) the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method







The method analyse_PCE is called after the polynomial approximation
has been created.

Usefull methods in Uncertainpy are:


	uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters


	uncertainpy.core.Uncertaintycalculations.create_distribution


	uncertainpy.core.RunModel.run





See also

uncertainpy.Data, uncertainpy.Parameters


	uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters

	Converts uncertain parameters to allowed list



	uncertainpy.core.Uncertaintycalculations.create_distribution

	Creates the uncertain parameter distribution



	uncertainpy.core.RunModel.run

	Runs the model












	
create_PCE_spectral(uncertain_parameters=None, polynomial_order=4, quadrature_order=None, allow_incomplete=True)[source]

	Create the polynomial approximation U_hat using pseudo-spectral
projection.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method. If None,
quadrature_order = polynomial_order + 2.
Default is None.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.






	Returns

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.








	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

The returned data should contain (but not necessarily) the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored







The model and feature do not necessarily give results for each
node. The pseudo-spectral methods is sensitive to missing values, so
allow_incomplete should be used with care.

The polynomial chaos expansion method for uncertainty quantification
approximates the model with a polynomial that follows specific
requirements. This polynomial can be used to quickly calculate the
uncertainty and sensitivity of the model.

To create the polynomial chaos expansion we first find the polynomials
using the three-therm recurrence relation if available,
otherwise the discretized Stieltjes method is used. Then we use the
pseudo-spectral projection to find the expansion coefficients for the
model and each feature of the model.

Pseudo-spectral projection is based on least squares minimization and
finds the expansion coefficients through numerical integration. The
integration uses a quadrature scheme with weights and nodes. We use Leja
quadrature with Smolyak sparse grids to reduce the number of nodes
required. For each of the nodes we evaluate the model and calculate the
features, and the polynomial approximation is created from these results.


See also

uncertainpy.Data(), uncertainpy.Parameters()








	
create_PCE_spectral_rosenblatt(uncertain_parameters=None, polynomial_order=4, quadrature_order=None, allow_incomplete=True)[source]

	Create the polynomial approximation U_hat using pseudo-spectral
projection and the Rosenblatt transformation. Works for dependend
uncertain parameters.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method. If None,
quadrature_order = polynomial_order + 2.
Default is None.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.






	Returns

	
	U_hat (dict) – A dictionary containing the polynomial approximations for the
model and each feature as chaospy.Poly objects.


	distribution (chaospy.Dist) – The multivariate distribution for the uncertain parameters.


	data (Data) – A data object containing the values from the model evaluation
and feature calculations.








	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes


	data should contain (but not necessarily) the following, if

	applicable:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored











The model and feature do not necessarily give results for each
node. The pseudo-spectral methods is sensitive to missing values, so
allow_incomplete should be used with care.

The polynomial chaos expansion method for uncertainty quantification
approximates the model with a polynomial that follows specific
requirements. This polynomial can be used to quickly calculate the
uncertainty and sensitivity of the model.

We use the Rosenblatt transformation to transform from dependent to
independent variables before we create the polynomial chaos expansion.
We first find the polynomials from the independent distributions
using the three-therm recurrence relation if available, otherwise the
discretized Stieltjes method is used. Then we use the pseudo-spectral
projection with the Rosenblatt transformation to find the expansion
coefficients for the model and each feature of the model.

Pseudo-spectral projection is based on least squares
minimization and finds the expansion coefficients through numerical
integration. The integration uses a quadrature scheme with weights
and nodes. We use Leja quadrature with Smolyak sparse grids to reduce the
number of nodes required.
We use the Rosenblatt transformation to transform the quadrature nodes
before they are sent to the model evaluation.
For each of the nodes we evaluate the model and calculate the features,
and the polynomial approximation is created from these results.


See also

uncertainpy.Data(), uncertainpy.Parameters()








	
create_distribution(uncertain_parameters=None)[source]

	Create a joint multivariate distribution for the selected parameters from
univariate distributions.


	Parameters

	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the joint multivariate
distribution. If None, the joint multivariate distribution for all
uncertain parameters is created.
Default is None.



	Returns

	distribution – The joint multivariate distribution for the given parameters.



	Return type

	chaospy.Dist



	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

If a multivariate distribution is defined in the Parameters.distribution,
that multivariate distribution is returned. Otherwise the joint
multivariate distribution for the selected parameters is created from
the univariate distributions.


See also

uncertainpy.Parameters()








	
create_mask(evaluations)[source]

	Mask evaluations that do not give results (anything but np.nan or None).


	Parameters

	evaluations (array_like) – Evaluations for the model.



	Returns

	
	masked_evaluations (list) – The evaluations that have results (not numpy.nan or None).


	mask (boolean array) – The mask itself, used to create the masked arrays.















	
create_masked_evaluations(data, feature)[source]

	Mask all model and feature evaluations that do not give results
(anything but np.nan) and the corresponding nodes.


	Parameters

	
	data (Data) – A Data object with evaluations for the model and each feature.
Must contain data[feature].evaluations.


	feature (str) – Name of the feature or model to mask.






	Returns

	
	masked_evaluations (list) – The evaluations that have results (not numpy.nan or None).


	mask (boolean array) – The mask itself, used to create the masked arrays.















	
create_masked_nodes(data, feature, nodes)[source]

	Mask all model and feature evaluations that do not give results
(anything but np.nan) and the corresponding nodes.


	Parameters

	
	data (Data) – A Data object with evaluations for the model and each feature.
Must contain data[feature].evaluations.


	feature (str) – Name of the feature or model to mask.


	nodes (array_like) – The nodes used to evaluate the model.






	Returns

	
	masked_evaluations (array_like) – The evaluations which have results.


	mask (boolean array) – The mask itself, used to create the masked arrays.


	masked_nodes (array_like) – The nodes that correspond to the evaluations with results.















	
create_masked_nodes_weights(data, feature, nodes, weights)[source]

	Mask all model and feature evaluations that do not give results
(anything but numpy.nan) and the corresponding nodes.


	Parameters

	
	data (Data) – A Data object with evaluations for the model and each feature.
Must contain data[feature].evaluations.


	nodes (array_like) – The nodes used to evaluate the model.


	feature (str) – Name of the feature or model to mask.


	weights (array_like) – Weights corresponding to each node.






	Returns

	
	masked_evaluations (array_like) – The evaluations which have results.


	mask (boolean array) – The mask itself, used to create the masked arrays.


	masked_nodes (array_like) – The nodes that correspond to the evaluations with results.


	masked_weights (array_like) – Masked weights that correspond to evaluations with results.















	
custom_uncertainty_quantification

	A custom uncertainty quantification method. Must follow the below
requirements.


	Parameters

	
	self (UncertaintyCalculation) – An explicit self is required as the first argument.
self can be used inside the custom function.


	**kwargs – Any number of optional arguments.






	Returns

	data – A Data object with calculated uncertainties.



	Return type

	Data





Notes

Usefull methods in Uncertainpy are:


	uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters
- Converts uncertain parameters to an allowed list.


	uncertainpy.core.Uncertaintycalculations.create_distribution
- Creates the uncertain parameter distribution


	uncertainpy.core.RunModel.run - Runs the model and all features.





See also

uncertainpy.Data


	uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters

	Converts uncertain parameters to list



	uncertainpy.core.Uncertaintycalculations.create_distribution

	Create uncertain parameter distribution



	uncertainpy.core.RunModel.run

	Runs the model












	
dependent(distribution)[source]

	Check if a distribution is dependent or not.


	Parameters

	distribution (chaospy.Dist) – A Chaospy probability distribution.



	Returns

	dependent – True if the distribution is dependent, False if is independent.



	Return type

	bool










	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
mc_calculate_sobol(evaluations, nr_uncertain_parameters, nr_samples)[source]

	Calculate the Sobol indices.


	Parameters

	
	evaluations (array_like) – The model evaluations, evaluated for the samples created by
SALIB.sample.saltelli.


	nr_uncertain_parameters (int) – Number of uncertain parameters.


	nr_samples (int) – Number of samples used in the Monte Carlo sampling.






	Returns

	
	sobol_first (list) – The first order Sobol indices for each uncertain parameter.


	sobol_total (list) – The total order Sobol indices for each uncertain parameter.















	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel








	
monte_carlo(uncertain_parameters=None, nr_samples=10000, seed=None, allow_incomplete=True)[source]

	Perform an uncertainty quantification using the quasi-Monte Carlo method.


	Parameters

	
	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	nr_samples (int, optional) – Number of samples for the quasi-Monte Carlo sampling.
Default is 10**4.


	seed (int, optional) – Set a random seed. If None, no seed is set.
Default is None.


	allow_incomplete (bool, optional) – If the uncertainty quantification should be performed for features
or models with incomplete evaluations.
Default is True.






	Returns

	data – A data object with all model and feature evaluations, as well as all
calculated statistical metrics.



	Return type

	Data



	Raises

	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.





Notes

The returned data should contain the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored


	data["model/features"].mean


	data["model/features"].variance


	data["model/features"].percentile_5


	data["model/features"].percentile_95


	data["model/features"].sobol_first, if more than 1 parameter


	data["model/features"].sobol_total, if more than 1 parameter


	data["model/features"].sobol_first_average, if more than 1 parameter


	data["model/features"].sobol_total_average, if more than 1 parameter







In the quasi-Monte Carlo method we quasi-randomly draw
(nr_samples/2)*(nr_uncertain_parameters + 2) (nr_samples=10**4 by default)
parameter samples using Saltelli’s sampling scheme (1). We require
this number of samples to be able to calculate the Sobol indices. We
evaluate the model for each of these parameter samples and calculate the
features from each of the model results. This step is performed in
parallel to speed up the calculations. Then we use nr_samples` of
the model and feature results to calculate the mean, variance, and 5th
and 95th percentile for the model and each feature. Lastly, we use all
calculated model and each feature results to calculate the Sobol indices
using Saltellie’s approach.

References


	1

	Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and
S. Tarantola (2010).  “Variance based sensitivity analysis of model
output.  Design and estimator for the total sensitivity index.”
Computer Physics Communications, 181(2):259-270,
doi:10.1016/j.cpc.2009.09.018.






See also

uncertainpy.Data(), uncertainpy.Parameters()








	
parameters

	Model parameters.


	Parameters

	new_parameters ({None, Parameters instance, list of Parameter instances, list [[name, value, distribution], …]}) – Either None, a Parameters instance or a list of the parameters that should be created.
The two lists are similar to the arguments sent to Parameters.
Default is None.



	Returns

	parameters – Parameters of the model.
If None, no parameters have been set.



	Return type

	{None, Parameters}






See also

uncertainpy.Parameter, uncertainpy.Parameters








	
polynomial_chaos(method=u'collocation', rosenblatt=u'auto', uncertain_parameters=None, polynomial_order=4, nr_collocation_nodes=None, quadrature_order=None, nr_pc_mc_samples=10000, allow_incomplete=True, seed=None, **custom_kwargs)[source]

	Perform an uncertainty quantification and sensitivity analysis
using polynomial chaos expansions.


	Parameters

	
	method ({“collocation”, “spectral”, “custom”}, optional) – The method to use when creating the polynomial chaos approximation.
“collocation” is the point collocation method “spectral” is
pseudo-spectral projection, and “custom” is the custom polynomial
method.
Default is “collocation”.


	rosenblatt ({“auto”, bool}, optional) – If the Rosenblatt transformation should be used. The Rosenblatt
transformation must be used if the uncertain parameters have
dependent variables. If “auto” the Rosenblatt transformation is used
if there are dependent parameters, and it is not used of the
parameters have independent distributions. Default is “auto”.


	uncertain_parameters ({None, str, list}, optional) – The uncertain parameter(s) to use when creating the polynomial
approximation. If None, all uncertain parameters are used.
Default is None.


	polynomial_order (int, optional) – The polynomial order of the polynomial approximation.
Default is 4.


	nr_collocation_nodes ({int, None}, optional) – The number of collocation nodes to choose, if point collocation is
used. If None, nr_collocation_nodes = 2* number of expansion factors + 2.
Default is None.


	quadrature_order ({int, None}, optional) – The order of the Leja quadrature method, if pseudo-spectral
projection is used. If None, quadrature_order = polynomial_order + 2.
Default is None.


	nr_pc_mc_samples (int, optional) – Number of samples for the Monte Carlo sampling of the polynomial
chaos approximation.


	allow_incomplete (bool, optional) – If the polynomial approximation should be performed for features or
models with incomplete evaluations.
Default is True.


	seed (int, optional) – Set a random seed. If None, no seed is set. Default is None.






	Returns

	data – A data object with all model and feature values, as well as all
calculated statistical metrics.



	Return type

	Data



	Raises

	
	ValueError – If a common multivariate distribution is given in
Parameters.distribution and not all uncertain parameters are used.


	ValueError – If method not one of “collocation”, “spectral” or “custom”.


	NotImplementedError – If “custom” is chosen and have not been implemented.








Notes

The returned data should contain the following:



	data["model/features"].evaluations


	data["model/features"].time


	data["model/features"].labels


	data.model_name


	data.incomplete


	data.method


	data.errored


	data["model/features"].mean


	data["model/features"].variance


	data["model/features"].percentile_5


	data["model/features"].percentile_95


	data["model/features"].sobol_first, if more than 1 parameter


	data["model/features"].sobol_total, if more than 1 parameter


	data["model/features"].sobol_first_average, if more than 1 parameter


	data["model/features"].sobol_total_average, if more than 1 parameter







The model and feature do not necessarily give results for each
node. The collocation method is robust towards missing values as long as
the number of results that remain is high enough. The pseudo-spectral
method on the other hand, is sensitive to missing values, so
allow_incomplete should be used with care in that case.

The polynomial chaos expansion method for uncertainty quantification
approximates the model with a polynomial that follows specific
requirements. This polynomial can be used to quickly calculate the
uncertainty and sensitivity of the model.

To create the polynomial chaos expansion we first find the polynomials
using the three-therm recurrence relation if available,
otherwise the discretized Stieltjes method is used. Then we use point collocation
or pseudo-spectral projection to find the expansion coefficients for the
model and each feature of the model.

In point collocation we require the polynomial approximation to be equal
the model at a set of collocation nodes. This results in a set of linear
equations for the polynomial coefficients we can solve. We choose
nr_collocation_nodes collocation nodes with Hammersley sampling from
the distribution. We evaluate the model and each feature in parallel,
and solve the resulting set of linear equations with Tikhonov
regularization.

Pseudo-spectral projection is based on least squares minimization and
finds the expansion coefficients through numerical integration. The
integration uses a quadrature scheme with weights and nodes. We use Leja
quadrature with Smolyak sparse grids to reduce the number of nodes
required. For each of the nodes we evaluate the model and calculate the
features, and the polynomial approximation is created from these results.

If we have dependent uncertain parameters we must use the Rosenblatt
transformation. We use the Rosenblatt transformation to transform from
dependent to independent variables before we create the polynomial chaos
expansion. We first find the polynomials from the independent
distributions using the three-term recurrence relation if available,
otherwise the discretized Stieltjes method is used

Both pseudo-spectral projection and point collocation is performed using
the independent distribution, the only difference is that we use the
Rosenblatt transformation to transform the nodes from the independent
distribution to the dependent distribution.


See also

uncertainpy.Data(), uncertainpy.Parameters()








	
separate_output_values(evaluations, nr_uncertain_parameters, nr_samples)[source]

	Notes

Separate the output from the model evaluations, evaluated for the
samples created by SALIB.sample.saltelli.


	Parameters

	
	evaluations (array_like) – The model evaluations, evaluated for the samples created by
SALIB.sample.saltelli.


	nr_uncertain_parameters (int) – Number of uncertain parameters.


	nr_samples (int) – Number of samples used in the Monte Carlo sampling.






	Returns

	
	A (array_like) – The A sample matrix from saltellie et. al. 2010.


	B (array_like) – The B sample matrix from saltellie et. al. 2010.


	AB (array_like) – The AB sample matrix from saltellie et. al. 2010.










Notes

Adapted from SALib/analyze/sobol.py:

https://github.com/SALib/SALib/blob/master/SALib/analyze/sobol.py















          

      

      

    

  

    
      
          
            
  
Base and ParameterBase

These classes enable setting and updating the model, features and parameters
(not in all classes) across classes from the top of the hierarchy
(UncertaintyQuantification) and down
(Parallel).
To add updating of the current class, as well as the classes further down the
setters can be overridden.
One example of this from RunModel):

@ParameterBase.model.setter
def model(self, new_model):
    ParameterBase.model.fset(self, new_model)

    self._parallel.model = self.model






API Reference


Base


	
class uncertainpy.core.Base(model=None, features=None, logger_level=u'info')[source]

	Set and update features and model.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}, optional) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all listed features will be calculated.
Default is None.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.
Default logger level is “info”.






	Variables

	
	model (uncertainpy.Model or subclass of uncertainpy.Model) – The model to perform uncertainty quantification on.


	features (uncertainpy.Features or subclass of uncertainpy.Features) – The features of the model to perform uncertainty quantification on.









See also

uncertainpy.features.Features, uncertainpy.models.Model


	uncertainpy.models.Model.run

	Requirements for the model run function.








	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel














ParameterBase


	
class uncertainpy.core.ParameterBase(model=None, parameters=None, features=None, logger_level=u'info')[source]

	Set and update features, model and parameters.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}, optional) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, …], list of Parameter instances, list [[name, value or Chaospy distribution], …], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],…],}) – List or dictionary of the parameters that should be created.
On the form parameters =



	{name_1: parameter_object_1, name: parameter_object_2, ...}


	{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}


	[parameter_object_1, parameter_object_2, ...],


	[[name_1, value_1 or Chaospy distribution], ...].


	[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]









	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.
Default is None.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”}, optional) – Set the threshold for the logging level.
Logging messages less severe than this level is ignored.
Default is “info”.






	Variables

	
	model (Model or Model subclass) – The model to perform uncertainty quantification on.


	parameters (Parameters) – The uncertain parameters.


	features (Features or subclass of Features) – The features of the model to perform uncertainty quantification on.


	logger_level ({"info", "debug", "warning", "error", "critical", None}) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging is performed.









See also

uncertainpy.features.Features, uncertainpy.models.Model


	uncertainpy.models.Model.run

	Requirements for the model run function.








	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel








	
parameters

	Model parameters.


	Parameters

	new_parameters ({None, Parameters instance, list of Parameter instances, list [[name, value, distribution], …]}) – Either None, a Parameters instance or a list of the parameters that should be created.
The two lists are similar to the arguments sent to Parameters.
Default is None.



	Returns

	parameters – Parameters of the model.
If None, no parameters have been set.



	Return type

	{None, Parameters}






See also

uncertainpy.Parameter, uncertainpy.Parameters



















          

      

      

    

  

    
      
          
            
  
Parallel

Parallel calculates the model and features of the
model for one specific set of model parameters.
Parallel is the class that is run in parallel.


API Reference


	
class uncertainpy.core.Parallel(model=None, features=None, logger_level=u'info')[source]

	Calculates the model and features of the model for one set of
model parameters. Is the class that is run in parallel.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}, optional) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.
Default is None.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed
Default logger level is “info”.






	Variables

	
	model (uncertainpy.Parallel.model) – 


	features (uncertainpy.Parallel.features) – 









See also

uncertainpy.features.Features, uncertainpy.models.Model


	uncertainpy.models.Model.run

	Requirements for the model run function.








	
create_interpolations(result)[source]

	Create an interpolation.

Model or feature result s that have a varying number of time steps,
are interpolated. Interpolation is only performed for one
dimensional result. Zero dimensional result does not need to be
interpolated, and support for interpolating two dimensional and above
result have currently not been implemented.
Adds a “interpolation” key-value pair to result.


	Parameters

	result (dict) – The model and feature results. The model and each feature each has
a dictionary with the time values, "time",  and model/feature
results, "values".
An example:

result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                       "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}







	Returns

	result – If an interpolation has been created, those features/model have
“interpolation” and the corresponding interpolation object added to
each features/model dictionary.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                              "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}









	Return type

	dict





Notes

If either model or feature results are irregular, the results must be
interpolated for Chaospy to be able to create the polynomial
approximation. For 1D results this is done with scipy:
InterpolatedUnivariateSpline(time, U, k=3).






	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
interpolation_1d(result, feature)[source]

	Create an interpolation for an 1D result.


	Parameters

	result (dict) – The model and feature results. The model and each feature each has
a dictionary with the time values, "time",  and model/feature
results, "values".
An example:

result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                       "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}







	Returns

	interpolation – The result of the interpolation. If either the time or values contain
None or numpy.nan, None is returned.



	Return type

	{scipy.interpolate.fitpack2.InterpolatedUnivariateSpline, None}



	Raises

	
	ValueError – If the values of the feature are not 1D.


	ValueError – If the time of the feature is not 1D.








Notes

The interpolation is performed using scipy:
InterpolatedUnivariateSpline(time, values, k=3).






	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel








	
run(model_parameters)[source]

	Run a model and calculate features from the model output,
return the results.

The model is run and each feature of the model is calculated from the
model output, time (time values) and values (model result). The
results are interpolated if they are irregular, meaning they return a
varying number of steps. An interpolation is created and added to
results for the model/features that are irregular. Each instance of None
is converted to numpy.nan.


	Parameters

	model_parameters (dictionary) – All model parameters as a dictionary. These parameters are sent to
model.run().



	Returns

	result – The model and feature results. The model and each feature each has
a dictionary with the time values, "time",  and model/feature results, "values".
If an interpolation has been created, those features/model also has
"interpolation" added. An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}









	Return type

	dictionary





Notes

Time time and result values are calculated from the model. Then sent to
model.postprocess, and the postprocessed result from model.postprocess
is added to result.
time and values are sent to features.preprocess and the preprocessed results
is used to calculate each feature.


See also


	uncertainpy.utils.utility.none_to_nan()

	Method for converting from None to NaN



	uncertainpy.features.Features.preprocess()

	preprocessing model results before features are calculated



	uncertainpy.models.Model.postprocess()

	posteprocessing of model results





















          

      

      

    

  

    
      
          
            
  
RunModel

RunModel is responsible for running the model in
parallel for all selected sets of parameters. It runs Parallel
in Parallel. RunModel organizes the results in a Data object.


API Reference


	
class uncertainpy.core.RunModel(model, parameters, features=None, logger_level=u'info', CPUs=u'max')[source]

	Calculate model and feature results for a series of different model parameters,
and store them in a Data object.


	Parameters

	
	model ({None, Model or Model subclass instance, model function}, optional) – Model to perform uncertainty quantification on. For requirements see
Model.run.
Default is None.


	parameters ({dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, …], list of Parameter instances, list [[name, value or Chaospy distribution], …], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],…],}) – List or dictionary of the parameters that should be created.
On the form parameters =



	{name_1: parameter_object_1, name: parameter_object_2, ...}


	{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}


	[parameter_object_1, parameter_object_2, ...],


	[[name_1, value_1 or Chaospy distribution], ...].


	[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]









	features ({None, Features or Features subclass instance, list of feature functions}, optional) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.
Default is None.


	logger_level ({“info”, “debug”, “warning”, “error”, “critical”, None}, optional) – Set the threshold for the logging level. Logging messages less severe
than this level is ignored. If None, no logging to file is performed.
Default logger level is “info”.


	CPUs ({int, None, “max”}, optional) – The number of CPUs to use when calculating the model and features.
If None, no multiprocessing is used.
If “max”, the maximum number of CPUs on the computer
(multiprocess.cpu_count()) is used.
Default is “max”.






	Variables

	
	model (uncertainpy.Model or subclass of uncertainpy.Model) – The model to perform uncertainty quantification on.


	parameters (uncertainpy.Parameters) – The uncertain parameters.


	features (uncertainpy.Features or subclass of uncertainpy.Features) – The features of the model to perform uncertainty quantification on.


	CPUs (int) – The number of CPUs used when calculating the model and features.









See also

uncertainpy.features.Features, uncertainpy.Parameter, uncertainpy.Parameters, uncertainpy.models.Model


	uncertainpy.models.Model.run

	Requirements for the model run function.








	
apply_interpolation(results, feature)[source]

	Perform interpolation of one model/feature using the interpolation
objects created by Parallel.


	Parameters

	
	results (list) – A list where each element is a result dictionary for each set
of model evaluations.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]







	feature (str) – Name of a feature or the model.






	Returns

	
	time (array_like) – The time array with the greatest number of time steps.


	interpolated_results (list) – A list containing all interpolated model/features results.
Interpolated at the points of the time results with the greatest
number of time steps.










Notes

Chooses the time array with the highest number of time points and use
this time array to interpolate the model/feature results in each of
those points. If an interpolation is None, gives numpy.nan instead.






	
create_model_parameters(nodes, uncertain_parameters)[source]

	Combine nodes (values) with the uncertain parameter names to create a
list of dictionaries corresponding to the model values for each
model evaluation.


	Parameters

	
	nodes (array) – A series of different set of parameters. The model and each feature is
evaluated for each set of parameters in the series.


	uncertain_parameters (list) – A list of names of the uncertain parameters.






	Returns

	model_parameters – A list where each element is a dictionary with the model parameters
for a single evaluation.
An example:

model_parameter = {"parameter 1": value 1, "parameter 2": value 2, ...}
model_parameters = [model_parameter 1, model_parameter 2, ...]









	Return type

	list










	
evaluate_nodes(nodes, uncertain_parameters)[source]

	Evaluate the the model and calculate the features
for the nodes (values) for the uncertain parameters.


	Parameters

	
	nodes (array) – The values for the uncertain parameters
to evaluate the model and features for.


	uncertain_parameters (list) – A list of the names of all uncertain parameters.






	Returns

	results – A list where each element is a result dictionary for each set
of model evaluations.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]









	Return type

	list



	Raises

	ImportError – If xvfbwrapper is not installed.










	
features

	Features to calculate from the model result.


	Parameters

	new_features ({None, Features or Features subclass instance, list of feature functions}) – Features to calculate from the model result.
If None, no features are calculated.
If list of feature functions, all will be calculated.



	Returns

	features – Features to calculate from the model result.
If None, no features are calculated.



	Return type

	{None, Features object}






See also

uncertainpy.features.Features, uncertainpy.features.GeneralSpikingFeatures, uncertainpy.features.SpikingFeatures, uncertainpy.features.GeneralNetworkFeatures, uncertainpy.features.NetworkFeatures








	
is_regular(results, feature)[source]

	Test if feature in results is regular or not, meaning it has a
varying number of values for each evaluation. Ignores results that
contains numpy.nan.


	Parameters

	
	results (list) – A list where each element is a result dictionary for each set
of model evaluations.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]







	feature (str) – Name of a feature or the model.






	Returns

	True if the feature is regular or False if the feature is irregular.



	Return type

	bool










	
model

	Model to perform uncertainty quantification on. For requirements see
Model.run.


	Parameters

	new_model ({None, Model or Model subclass instance, model function}) – Model to perform uncertainty quantification on.



	Returns

	model – Model to perform uncertainty quantification on.



	Return type

	Model or Model subclass instance






See also

uncertainpy.models.Model, uncertainpy.models.Model.run, uncertainpy.models.NestModel, uncertainpy.models.NeuronModel








	
parameters

	Model parameters.


	Parameters

	new_parameters ({None, Parameters instance, list of Parameter instances, list [[name, value, distribution], …]}) – Either None, a Parameters instance or a list of the parameters that should be created.
The two lists are similar to the arguments sent to Parameters.
Default is None.



	Returns

	parameters – Parameters of the model.
If None, no parameters have been set.



	Return type

	{None, Parameters}






See also

uncertainpy.Parameter, uncertainpy.Parameters








	
regularize_nan_results(results)[source]

	Regularize arrays with that only contain numpy.nan values.

Make each result for each feature have the same the same shape, if they
only contain numpy.nan values.


	Parameters

	results (list) – A list where each element is a result dictionary for each set
of model evaluations.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]







	Returns

	results – A list with where the only nan results have been regularized.
On the form:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]









	Return type

	list










	
results_to_data(results)[source]

	Store results in a Data object.

Stores the time and (interpolated) results for the model and each
feature in a Data object. Performs the interpolation calculated in
Parallel, if the result is irregular.


	Parameters

	results (list) – A list where each element is a result dictionary for each set
of model evaluations.
An example:

result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature0d": {"values": 1,
                        "time": np.nan},
          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                               "interpolation": scipy interpolation object},
          "feature_invalid": {"values": np.nan,
                              "time": np.nan}}

results = [result 1, result 2, ..., result N]







	Returns

	data – A Data object with time and (interpolated) results for the model and
each feature.



	Return type

	Data object





Notes

Sets the following in data, if applicable:
1. data["model/features"].evaluations, which contains all values
2. data["model/features"].time
3. data["model/features"].labels
4. data.model_name


See also

uncertainpy.Data()








	
run(nodes, uncertain_parameters)[source]

	Evaluate the the model and calculate the features
for the nodes (values) for the uncertain parameters.
The results are interpolated as necessary.


	Parameters

	
	nodes (array) – A series of different set of parameters. The model and each feature is
evaluated for each set of parameters in the series.


	uncertain_parameters (list) – A list of names of the uncertain parameters.






	Returns

	data – A Data object with time and (interpolated) results for
the model and each feature.



	Return type

	Data object






See also

uncertainpy.Data()

















          

      

      

    

  

    
      
          
            
  
Theory




Here we give an overview of the theory behind uncertainty quantification and
sensitivity analysis with a focus on (quasi-)Monte Carlo methods and polynomial
chaos expansions, the methods implemented in Uncertainpy.

Uncertainty quantification and sensitivity analysis provide rigorous procedures
to analyse and characterize the effects of parameter uncertainty on the output
of a model.
The methods for uncertainty quantification and sensitivity analysis can be
divided into global and local methods.
Local methods keep all but one model parameter fixed and explore how much the
model output changes due to variations in that single parameter.
Global methods,
on the other hand, allows the entire parameter space to vary simultaneously.
Global methods can therefore identify complex dependencies between the model
parameters in terms of how they affect the model output.

The global methods can be further divided into intrusive and non-intrusive methods.
Intrusive methods require changes to the underlying model equations,
and are often challenging to implement.
Models in neuroscience are often created with the use of advanced simulators such
as NEST [http://www.nest-simulator.org/] and NEURON [https://www.neuron.yale.edu/neuron/].
Modifying the underlying equations of models using these simulators is a
complicated task best avoided.
Non-intrusive methods, on the other hand, consider the model as a black box,
and can be applied to any model without needing to modify the model equations
or implementation.
Global, non-intrusive methods are therefore the methods of choice in Uncertainpy.
The uncertainty calculations in Uncertainpy is based on the Python package
Chaospy [https://github.com/jonathf/chaospy],
which provides global non-intrusive methods for uncertainty quantification
and sensitivity analysis.

We start by introducing the problem definition.
Next, we introduce the statistical measurements for uncertainty quantification
and sensitivity analysis.
Further, we give an introduction to (quasi-)Monte Carlo methods
and Polynomial chaos expansions,
the two methods used to calculate the uncertainty and sensitivity in Uncertainpy.
We next explain how Uncertainpy handle cases with
dependent model parameters.
We note that insight into this theory is not a prerequisite for using
Uncertainpy.


	Problem definition


	Uncertainty quantification


	Sensitivity analysis


	(Quasi-)Monte Carlo methods


	Polynomial chaos expansions


	Dependency between uncertain parameters








          

      

      

    

  

    
      
          
            
  
The problem definition

Consider a model \(U\) that depends on space \(\boldsymbol{x}\) and time \(t\),
has \(D\) uncertain input parameters \(\boldsymbol{Q} = \left[Q_1, Q_2, \ldots, Q_D \right]\),
and gives the output \(Y\):


\[Y = U(\boldsymbol{x}, t, \boldsymbol{Q}).\]

The output \(Y\) can be any value within the output space \(\Omega_Y\)
and has an unknown probability density function \(\rho_Y\).
The goal of an uncertainty quantification is to describe the unknown \(\rho_Y\)
through statistical metrics.
We are only interested in the input and output of the model,
and we ignore all details on how the model works.
The model \(U\) is thus considered a black box,
and may represent any model, for example a spiking neuron model that returns a
voltage trace,
or a network model that return a spike train.

We assume the model includes uncertain parameters that can be described
by a multivariate probability density function \(\rho_{\boldsymbol{Q}}\).
Examples of parameters that can be uncertain in neuroscience are the
conductance of a single ion channel,
or the synaptic weight between two species of neurons in a network.
If the uncertain parameters are independent,
the multivariate probability density function \(\rho_{\boldsymbol{Q}}\) can be given as
separate univariate probability density functions \(\rho_{Q_i}\),
one for each uncertain parameter \(Q_i\).
The joint multivariate probability density function for the independent
uncertain parameters is then:


\[\rho_{\boldsymbol{Q}} = \prod_{i=1}^D \rho_{Q_i}.\]

In cases where the uncertain input parameters are dependent,
the multivariate probability density function \(\rho_{\boldsymbol{Q}}\) must be defined directly.
We assume the probability density functions are known, and are not here
concerned with how they are determined.
They may be the product of a series of measurements, a parameter estimation,
or educated guesses made by experts.





          

      

      

    

  

    
      
          
            
  
Uncertainty quantification

The goal of an uncertainty quantification is to describe the unknown
distribution of the model output \(\rho_Y\) through statistical metrics.
The two most common statistical metrics used in this context are the
mean \(\mathbb{E}\) (also called the expectation value)
and the variance \(\mathbb{V}\).
The mean is defined as:


\[\mathbb{E}[Y] = \int_{\Omega_Y} y\rho_Y(y)dy,\]

and tells us the expected value of the model output \(Y\).
The variance is defined as:


\[\mathbb{V}[Y] = \int_{\Omega_Y} {\left(y - \mathbb{E}[Y]\right)}^2\rho_Y(y)dy,\]

and tells us how much the output varies around the mean.

Another useful metric is the \((100\cdot x)\)-th percentile \(P_x\) of \(Y\),
which defines a value below which \(100 \cdot x\) percent of the simulation
outputs are located.
For example, 5% of the simulations of a model will give an output lower than
the \(5\)-th percentile.
The \((100\cdot x)\)-th percentile is defined as:


\[x = \int_{-\infty}^{P_x}\rho_Y(y)dy.\]

We can combine two percentiles to create a prediction interval \(I_x\),
which is a range of values such that a \(100\cdot x\) percentage of the outputs
\(Y\) occur within this range:


\[I_x = \left[P_{(x/2)}, P_{(1-x/2)}\right]. \label{eq:prediction}\]

The \(90\%\) prediction interval gives us the interval within \(90\%\) of the \(Y\) outcomes occur,
which also means that \(5\%\) of the outcomes are above and \(5\%\) below this interval.





          

      

      

    

  

    
      
          
            
  
Sensitivity analysis

Sensitivity analysis quantifies how much of the uncertainty in the model output
each uncertain parameter is responsible for.
It is the computational equivalent of analysis of variance (ANOVA) performed by
experimentalists (Archer et al., 1997 [http://www.tandfonline.com/doi/abs/10.1080/00949659708811825]).
For a review of different sensitivity analysis methods,
see Hamby (1994) [https://link.springer.com/article/10.1007/BF00547132]; Borgonovo and Plischke (2016) [http://dx.doi.org/10.1016/j.ejor.2015.06.032]. Several different sensitivity measures exist,
but Uncertainpy uses the commonly used Sobol sensitivity indices (Sobol, 1990 [http://www.mathnet.ru/eng/mm2320]).
The Sobol sensitivity indices quantify how much of the variance in the model
output each uncertain parameter is responsible for.
If a parameter has a low sensitivity index,
variations of this parameter results in comparatively small variations in the
final model output.
On the other hand, if a parameter has a high sensitivity index,
a change in this parameter leads to a dramatic change in the model output.

A sensitivity analysis provides a better understanding of the relationship
between the parameters and output of a model.
This can be useful in a model reduction context.
For example, a parameter with a low sensitivity index can essentially be set to
any fixed value (within the explored distribution),
without affecting the variance of the model much.
In some cases, such an analysis can justify leaving out entire mechanisms from
a model.
For example, if a single neuron model is insensitive to the conductance of a
given ion channel \(g_x\),
this ion channel could possibly be removed from the model without changing the
model behavior much.
Additionally, a model-based sensitivity analysis can guide the experimental focus,
so that special care is taken to obtain accurate measures of parameters with
high sensitivity indices,
while more crude measures are acceptable for parameters with low sensitivity
indices.

There exist several types of Sobol indices.
The first order Sobol sensitivity index \(S\) measures the direct effect each
parameter has on the variance of the model:


\[S_i = \frac{\mathbb{V}[\mathbb{E}[Y | Q_i]}{\mathbb{V}[Y]}.\]

Here, \(\mathbb{E}[{Y | Q_i}]\) denotes the expected value of the output \(Y\) when parameter
\(Q_i\) is fixed.
The first order Sobol sensitivity index tells us the expected reduction in the
variance of the model when we fix parameter \(Q_i\).
The sum of the first order Sobol sensitivity indices can not exceed one
(Glen and Isaacs, 2012 [http://dx.doi.org/10.1016/j.envsoft.2012.03.014]).

Higher order sobol indices exist,
and give the sensitivity due interactions between a parameter \(Q_i\) and various
other parameters.
It is customary to only calculate the first and total order indices
(Saltelli et al., 2010 [http://dx.doi.org/10.1016/j.cpc.2009.09.018]).
The total Sobol sensitivity index \(S_{Ti}\) includes the sensitivity of both
first order effects as well as the sensitivity due to interactions (covariance)
between a given parameter \(Q_i\) and all other parameters (Homma and Saltelli, 1996 [http://www.sciencedirect.com/science/article/pii/0951832096000026]).
It is defined as:


\[S_{Ti} = 1 - \frac{\mathbb{V}[\mathbb{E}[Y | Q_{-i}]]}{\mathbb{V}[Y]},\]

where \(Q_{-i}\) denotes all uncertain parameters except \(Q_{i}\).
The sum of the total Sobol sensitivity indices is equal to or greater than one
(Glen and Isaacs, 2012 [http://dx.doi.org/10.1016/j.envsoft.2012.03.014]).
If no higher order interactions are present,
the sum of both the first and total order sobol indices are equal to one.

We might want to compare Sobol indices across different features
(see in Features).
This can be problematic when we have features with different number of output
dimensions.
In the case of a zero dimensional output the Sobol indices is a single number,
while for a one dimensional output we get Sobol indices for each point in time.
To better be able to compare the Sobol indices across such features,
we therefore calculate the average of both the first order Sobol
indices \(\widehat{S}\),
and the total order Sobol indices \(\widehat{S}_{T}\).





          

      

      

    

  

    
      
          
            
  
(Quasi-)Monte Carlo methods

A typical way to obtain the statistical metrics mentioned above is to use
(quasi-)Monte Carlo methods.
We give a brief overview of these methods here,
for more comprehensive reviews see Lemieux, (2009) [http://www.springer.com/us/book/9780387781648]; Rubinstein and Kroese (2016) [http://onlinelibrary.wiley.com/book/10.1002/9781118631980].

The general idea behind the standard Monte Carlo method is quite simple.
A set of parameters is pseudo-randomly drawn from the joint multivariate probability
density function \(\rho_{\boldsymbol{Q}}\) of the parameters.
The model is then evaluated for the sampled parameter set.
This process is repeated thousand of times,
and statistical metrics such as the mean and variance are computed for the
resulting series of model outputs.
The problem with the standard Monte Carlo method is that a very high number of
model evaluations is required to get reliable statistics.
If the model is computationally expensive,
the Monte Carlo method may require insurmountable computer power.

Quasi-Monte Carlo methods improve upon the standard Monte Carlo method by using
variance-reduction techniques to reduce the number of model evaluations needed.
These methods are based on increasing the coverage of the sampled parameter
space by distributing the samples more evenly.
Fewer samples are then required to get a given accuracy.
Instead of pseudo-randomly selecting parameters from \(\rho_{\boldsymbol{Q}}\),
the samples are selected using a low-discrepancy sequence such as the
Hammersley sequence (Hammersley, 1960 [http://dx.doi.org/10.1111/j.1749-6632.1960.tb42846.x]).
Quasi-Monte Carlo methods are faster than the Monte Carlo method,
as long as the number of uncertain parameters is sufficiently small
(Lemieux, 2009 [http://www.springer.com/us/book/9780387781648]).

Uncertainpy allows quasi-Monte Carlo methods to be used to compute the
statistical metrics.
When this option is chosen, the metrics are computed as follows.
With \(N\) model evaluations,
which gives the results \(\boldsymbol{Y} = [Y_1, Y_2, \ldots, Y_N]\),
the mean is given by


\[\mathbb{E}[\boldsymbol{Y}] \approx \frac{1}{N}\sum_{i=1}^{N} Y_i,\]

and the variance by


\[\mathbb{V}[\boldsymbol{Y}] \approx \frac{1}{N-1}\sum_{i=1}^{N} {\left(Y_i - \mathbb{E}[Y]\right)}^2.\]

Prediction intervals are found by sorting the model evaluations
\(\boldsymbol{Y}\) in an increasing order,
and then find the \((100\cdot x/2)\)-th and \((100\cdot (1 - x/2))\)-th percentiles.
The Sobol indices can be calculated using the method in
(Saltelli et al., 2010 [http://dx.doi.org/10.1016/j.cpc.2009.09.018]).
The total number of samples \(N_t\) required by this method is:


\[N_t = N(D + 2)\]





          

      

      

    

  

    
      
          
            
  
Polynomial chaos expansions

A recent mathematical framework for estimating uncertainty is that of
polynomial chaos expansions (Xiu and Hesthaven, 2005 [https://doi.org/10.1137/040615201]).
Polynomial chaos expansions can be seen as a subset of polynomial approximation
methods.
For a review of polynomial chaos expansions see (Xiu, (2010) [https://press.princeton.edu/titles/9229.html]).
Polynomial chaos expansions are much faster than (quasi-)Monte Carlo
methods as long as the number of uncertain parameters is relatively low,
typically smaller than about twenty (Crestaux et al.,2009 [https://www.sciencedirect.com/science/article/pii/S0951832008002561]).
This is the case for many neuroscience models,
and even for models with a higher number of uncertain parameters,
the analysis could be performed for selected subsets of the parameters.

The general idea behind polynomial chaos expansions is to approximate the
model \(U\) with a polynomial expansion \(\hat{U}\):


\[U \approx \hat{U}(\boldsymbol{x}, t, \boldsymbol{Q}) = \sum_{n=0}^{N_p - 1} c_n(\boldsymbol{x}, t) \boldsymbol{\phi}_n (\boldsymbol{Q}),\]

where \(\boldsymbol{\phi}_n\) denote polynomials and \(c_n\) denote expansion
coefficients.
The number of expansion factors \(N_p\) is given by


\[N_p = \binom{D+p}{p},\]

where \(p\) is the polynomial order.
The number of expansion coefficients in the multivariate case (\(D>1\)) is
greater than the polynomial order.
This is because the multivariate polynomial is created by multiplying univariate
polynomials together.
The polynomials \(\phi_n(\boldsymbol{Q})\) are chosen so they are orthogonal with respect to
the probability density function \(\rho_{\boldsymbol{Q}}\),
which ensures useful statistical properties.

When creating the polynomial chaos expansion,
the first step is to find the orthogonal polynomials \(\boldsymbol{\phi}_n\),
which in Uncertainpy is done using the so called three-term recurrence relation
(Xiu, 2010 [https://press.princeton.edu/titles/9229.html]).
The next step is to estimate the expansion coefficients \(c_n\).
The non-intrusive methods for doing this can be divided into two classes,
point-collocation methods and pseudo-spectral projection methods,
both of which are implemented in Uncertainpy.

Point collocation is the default method used in Uncertainpy.
This method is based on demanding that the polynomial approximation is equal to
the model output evaluated at a set of collocation nodes drawn from the
joint probability density function \(\rho_{\boldsymbol{Q}}\).
This demand results in a set of linear equations for the polynomial
coefficients \(c_n\),
which can be solved by the use of regression methods.
The regression method used in Uncertainpy is Tikhonov regularization
(Rifkin and Lippert, 2007 [http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf]).

Pseudo-spectral projection methods are based on least squares minimization in
the orthogonal polynomial space,
and finds the expansion coefficients \(c_n\) through numerical integration.
The integration uses a quadrature scheme with weights and nodes,
and the model is evaluated at these nodes.
The quadrature method used in Uncertainpy is Leja quadrature,
with Smolyak sparse grids to reduce the number of nodes required
(Narayan and Jakeman, 2014 [http://arxiv.org/abs/1404.5663]; Smolyak, 1963 [https://www.scopus.com/record/display.uri?eid=2-s2.0-0001048298&origin=inward&txGid=581f5796dee89fce19384c4bb4f6afbc]).
Pseudo-spectral projection methods are only used in Uncertainpy when requested
by the user.

Several of the statistical metrics of interest can be obtained directly from
the polynomial chaos expansion \(\hat{U}\).
The mean is simply


\[\mathbb{E}[U] \approx \mathbb{E}[\hat{U}] = c_0,\]

and the variance is


\[\mathbb{V}[U] \approx \mathbb{V}[\hat{U}] = \sum_{n=1}^{N_p - 1} \gamma_n c_n^2,\]

where \(\gamma_n\) is a normalization factor defined as


\[\gamma_n =  \mathbb{E}\left[\boldsymbol{\phi}_n^2(\boldsymbol{Q})\right].\]

The first and total order Sobol indices can also be calculated directly from
the polynomial chaos expansion (Sudret, 2008 [https://www.sciencedirect.com/science/article/pii/S0951832007001329]; Crestaux et al.,2009 [https://www.sciencedirect.com/science/article/pii/S0951832008002561]).
On the other hand, the percentiles and prediction interval must be estimated
using \(\hat{U}\) as a surrogate model,
and then perform the same procedure as for the (quasi-)Monte Carlo methods.





          

      

      

    

  

    
      
          
            
  
Dependency between uncertain parameters

One of the underlying assumptions when creating the polynomial chaos expansion is that the model
parameters are independent.
However, dependent parameters in neuroscience models are quite common
(Achard and De Schutter, 2006 [http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020094]).
Fortunately, models containing dependent parameters can be analyzed
with Uncertainpy by the aid of the Rosenblatt transformation from Chaospy
(Rosenblatt, 1952 [http://projecteuclid.org/euclid.aoms/1177729394]; Feinberg and Langtangen, 2015 [http://www.sciencedirect.com/science/article/pii/S1877750315300119]).
The idea is to use the Rosenblatt transformation to create a reformulated model
\(\widetilde{U}(\boldsymbol{x}, t, \boldsymbol{R})\), that
takes an arbitrary independent parameter set \(\boldsymbol{R}\) as input,
instead of the original dependent parameter set \(\boldsymbol{Q}\).
We use the Rosenblatt transformation to transform from \(\boldsymbol{R}\) to
\(\boldsymbol{Q}\), which makes it so \(\widetilde{U}\) give the same output
(and statistics) as the original model:


\[\widetilde{U}(\boldsymbol{x}, t, \boldsymbol{R}) = U(\boldsymbol{x}, t, \boldsymbol{Q}).\]

We can then perform polynomial chaos expansion as normal on the reformulated model,
since it has independent parameters.

The Rosenblatt transformation \(T_{\boldsymbol{Q}}\) transforms the
random variable \(\boldsymbol{Q}\) to
the random variable \(\boldsymbol{H}\),
which in a statistical context behaves as if it were drawn uniformly from the unit
hypercube \({[0, 1]}^D\).


\[T_{\boldsymbol{Q}}(\boldsymbol{Q}) = \boldsymbol{H}.\]

Here, \(T_{\boldsymbol{Q}}\) denotes a Rosenblatt transformation which is uniquely defined by
\(\rho_Q\) (the probability distribution of \(\boldsymbol{Q}\)).
We can use the Rosenblatt transformation to transform from \(\boldsymbol{R}\) to \(\boldsymbol{Q}\)
(through \(\boldsymbol{H}\)) to regain our original parameters:


\[\begin{split}T_{\boldsymbol{Q}}(\boldsymbol{Q}) &= \boldsymbol{H} = T_{\boldsymbol{R}}(\boldsymbol{R}) \\
        \boldsymbol{Q} &= T_{\boldsymbol{Q}}^{-1}(T_{\boldsymbol{R}}(\boldsymbol{R})).\end{split}\]

Using this relation between \(\boldsymbol{R}\) and \(\boldsymbol{Q}\) in we can
reformulate our model to take \(\boldsymbol{R}\) as input,
but still give the same results:


\[U(\boldsymbol{x}, t, \boldsymbol{Q})
= U(\boldsymbol{x}, t, T_{\boldsymbol{Q}}^{-1}(T_{\boldsymbol{R}}(\boldsymbol{R})))
= \widetilde{U}(\boldsymbol{x}, t, \boldsymbol{R}).\]

The statistical analysis can now be performed on this reformulated model
\(\widetilde{U}\) as before.
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  Source code for _abcoll

# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.

DON'T USE THIS MODULE DIRECTLY!  The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues.  Unit tests are in test_collections.
"""

from abc import ABCMeta, abstractmethod
import sys

__all__ = ["Hashable", "Iterable", "Iterator",
           "Sized", "Container", "Callable",
           "Set", "MutableSet",
           "Mapping", "MutableMapping",
           "MappingView", "KeysView", "ItemsView", "ValuesView",
           "Sequence", "MutableSequence",
           ]

### ONE-TRICK PONIES ###

def _hasattr(C, attr):
    try:
        return any(attr in B.__dict__ for B in C.__mro__)
    except AttributeError:
        # Old-style class
        return hasattr(C, attr)


class Hashable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __hash__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Hashable:
            try:
                for B in C.__mro__:
                    if "__hash__" in B.__dict__:
                        if B.__dict__["__hash__"]:
                            return True
                        break
            except AttributeError:
                # Old-style class
                if getattr(C, "__hash__", None):
                    return True
        return NotImplemented


class Iterable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __iter__(self):
        while False:
            yield None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterable:
            if _hasattr(C, "__iter__"):
                return True
        return NotImplemented

Iterable.register(str)


class Iterator(Iterable):

    @abstractmethod
    def next(self):
        'Return the next item from the iterator. When exhausted, raise StopIteration'
        raise StopIteration

    def __iter__(self):
        return self

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Iterator:
            if _hasattr(C, "next") and _hasattr(C, "__iter__"):
                return True
        return NotImplemented


class Sized:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __len__(self):
        return 0

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Sized:
            if _hasattr(C, "__len__"):
                return True
        return NotImplemented


class Container:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __contains__(self, x):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Container:
            if _hasattr(C, "__contains__"):
                return True
        return NotImplemented


class Callable:
    __metaclass__ = ABCMeta

    @abstractmethod
    def __call__(self, *args, **kwds):
        return False

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Callable:
            if _hasattr(C, "__call__"):
                return True
        return NotImplemented


### SETS ###


class Set(Sized, Iterable, Container):
    """A set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__ and __len__.

    To override the comparisons (presumably for speed, as the
    semantics are fixed), redefine __le__ and __ge__,
    then the other operations will automatically follow suit.
    """

    def __le__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        if len(self) > len(other):
            return False
        for elem in self:
            if elem not in other:
                return False
        return True

    def __lt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) < len(other) and self.__le__(other)

    def __gt__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) > len(other) and self.__ge__(other)

    def __ge__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        if len(self) < len(other):
            return False
        for elem in other:
            if elem not in self:
                return False
        return True

    def __eq__(self, other):
        if not isinstance(other, Set):
            return NotImplemented
        return len(self) == len(other) and self.__le__(other)

    def __ne__(self, other):
        return not (self == other)

    @classmethod
    def _from_iterable(cls, it):
        '''Construct an instance of the class from any iterable input.

        Must override this method if the class constructor signature
        does not accept an iterable for an input.
        '''
        return cls(it)

    def __and__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        return self._from_iterable(value for value in other if value in self)

    __rand__ = __and__

    def isdisjoint(self, other):
        'Return True if two sets have a null intersection.'
        for value in other:
            if value in self:
                return False
        return True

    def __or__(self, other):
        if not isinstance(other, Iterable):
            return NotImplemented
        chain = (e for s in (self, other) for e in s)
        return self._from_iterable(chain)

    __ror__ = __or__

    def __sub__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return self._from_iterable(value for value in self
                                   if value not in other)

    def __rsub__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return self._from_iterable(value for value in other
                                   if value not in self)

    def __xor__(self, other):
        if not isinstance(other, Set):
            if not isinstance(other, Iterable):
                return NotImplemented
            other = self._from_iterable(other)
        return (self - other) | (other - self)

    __rxor__ = __xor__

    # Sets are not hashable by default, but subclasses can change this
    __hash__ = None

    def _hash(self):
        """Compute the hash value of a set.

        Note that we don't define __hash__: not all sets are hashable.
        But if you define a hashable set type, its __hash__ should
        call this function.

        This must be compatible __eq__.

        All sets ought to compare equal if they contain the same
        elements, regardless of how they are implemented, and
        regardless of the order of the elements; so there's not much
        freedom for __eq__ or __hash__.  We match the algorithm used
        by the built-in frozenset type.
        """
        MAX = sys.maxint
        MASK = 2 * MAX + 1
        n = len(self)
        h = 1927868237 * (n + 1)
        h &= MASK
        for x in self:
            hx = hash(x)
            h ^= (hx ^ (hx << 16) ^ 89869747)  * 3644798167
            h &= MASK
        h = h * 69069 + 907133923
        h &= MASK
        if h > MAX:
            h -= MASK + 1
        if h == -1:
            h = 590923713
        return h

Set.register(frozenset)


class MutableSet(Set):
    """A mutable set is a finite, iterable container.

    This class provides concrete generic implementations of all
    methods except for __contains__, __iter__, __len__,
    add(), and discard().

    To override the comparisons (presumably for speed, as the
    semantics are fixed), all you have to do is redefine __le__ and
    then the other operations will automatically follow suit.
    """

    @abstractmethod
    def add(self, value):
        """Add an element."""
        raise NotImplementedError

    @abstractmethod
    def discard(self, value):
        """Remove an element.  Do not raise an exception if absent."""
        raise NotImplementedError

    def remove(self, value):
        """Remove an element. If not a member, raise a KeyError."""
        if value not in self:
            raise KeyError(value)
        self.discard(value)

    def pop(self):
        """Return the popped value.  Raise KeyError if empty."""
        it = iter(self)
        try:
            value = next(it)
        except StopIteration:
            raise KeyError
        self.discard(value)
        return value

    def clear(self):
        """This is slow (creates N new iterators!) but effective."""
        try:
            while True:
                self.pop()
        except KeyError:
            pass

    def __ior__(self, it):
        for value in it:
            self.add(value)
        return self

    def __iand__(self, it):
        for value in (self - it):
            self.discard(value)
        return self

    def __ixor__(self, it):
        if it is self:
            self.clear()
        else:
            if not isinstance(it, Set):
                it = self._from_iterable(it)
            for value in it:
                if value in self:
                    self.discard(value)
                else:
                    self.add(value)
        return self

    def __isub__(self, it):
        if it is self:
            self.clear()
        else:
            for value in it:
                self.discard(value)
        return self

MutableSet.register(set)


### MAPPINGS ###


class Mapping(Sized, Iterable, Container):

    """A Mapping is a generic container for associating key/value
    pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __iter__, and __len__.

    """

    @abstractmethod
    def __getitem__(self, key):
        raise KeyError

    def get(self, key, default=None):
        'D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.'
        try:
            return self[key]
        except KeyError:
            return default

    def __contains__(self, key):
        try:
            self[key]
        except KeyError:
            return False
        else:
            return True

    def iterkeys(self):
        'D.iterkeys() -> an iterator over the keys of D'
        return iter(self)

    def itervalues(self):
        'D.itervalues() -> an iterator over the values of D'
        for key in self:
            yield self[key]

    def iteritems(self):
        'D.iteritems() -> an iterator over the (key, value) items of D'
        for key in self:
            yield (key, self[key])

    def keys(self):
        "D.keys() -> list of D's keys"
        return list(self)

    def items(self):
        "D.items() -> list of D's (key, value) pairs, as 2-tuples"
        return [(key, self[key]) for key in self]

    def values(self):
        "D.values() -> list of D's values"
        return [self[key] for key in self]

    # Mappings are not hashable by default, but subclasses can change this
    __hash__ = None

    def __eq__(self, other):
        if not isinstance(other, Mapping):
            return NotImplemented
        return dict(self.items()) == dict(other.items())

    def __ne__(self, other):
        return not (self == other)

class MappingView(Sized):

    def __init__(self, mapping):
        self._mapping = mapping

    def __len__(self):
        return len(self._mapping)

    def __repr__(self):
        return '{0.__class__.__name__}({0._mapping!r})'.format(self)


class KeysView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, key):
        return key in self._mapping

    def __iter__(self):
        for key in self._mapping:
            yield key

KeysView.register(type({}.viewkeys()))

class ItemsView(MappingView, Set):

    @classmethod
    def _from_iterable(self, it):
        return set(it)

    def __contains__(self, item):
        key, value = item
        try:
            v = self._mapping[key]
        except KeyError:
            return False
        else:
            return v == value

    def __iter__(self):
        for key in self._mapping:
            yield (key, self._mapping[key])

ItemsView.register(type({}.viewitems()))

class ValuesView(MappingView):

    def __contains__(self, value):
        for key in self._mapping:
            if value == self._mapping[key]:
                return True
        return False

    def __iter__(self):
        for key in self._mapping:
            yield self._mapping[key]

ValuesView.register(type({}.viewvalues()))

class MutableMapping(Mapping):

    """A MutableMapping is a generic container for associating
    key/value pairs.

    This class provides concrete generic implementations of all
    methods except for __getitem__, __setitem__, __delitem__,
    __iter__, and __len__.

    """

    @abstractmethod
    def __setitem__(self, key, value):
        raise KeyError

    @abstractmethod
    def __delitem__(self, key):
        raise KeyError

    __marker = object()

    def pop(self, key, default=__marker):
        '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
          If key is not found, d is returned if given, otherwise KeyError is raised.
        '''
        try:
            value = self[key]
        except KeyError:
            if default is self.__marker:
                raise
            return default
        else:
            del self[key]
            return value

    def popitem(self):
        '''D.popitem() -> (k, v), remove and return some (key, value) pair
           as a 2-tuple; but raise KeyError if D is empty.
        '''
        try:
            key = next(iter(self))
        except StopIteration:
            raise KeyError
        value = self[key]
        del self[key]
        return key, value

    def clear(self):
        'D.clear() -> None.  Remove all items from D.'
        try:
            while True:
                self.popitem()
        except KeyError:
            pass

    def update(*args, **kwds):
        ''' D.update([E, ]**F) -> None.  Update D from mapping/iterable E and F.
            If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
            If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
            In either case, this is followed by: for k, v in F.items(): D[k] = v
        '''
        if not args:
            raise TypeError("descriptor 'update' of 'MutableMapping' object "
                            "needs an argument")
        self = args[0]
        args = args[1:]
        if len(args) > 1:
            raise TypeError('update expected at most 1 arguments, got %d' %
                            len(args))
        if args:
            other = args[0]
            if isinstance(other, Mapping):
                for key in other:
                    self[key] = other[key]
            elif hasattr(other, "keys"):
                for key in other.keys():
                    self[key] = other[key]
            else:
                for key, value in other:
                    self[key] = value
        for key, value in kwds.items():
            self[key] = value

    def setdefault(self, key, default=None):
        'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
        try:
            return self[key]
        except KeyError:
            self[key] = default
        return default

MutableMapping.register(dict)


### SEQUENCES ###


class Sequence(Sized, Iterable, Container):
    """All the operations on a read-only sequence.

    Concrete subclasses must override __new__ or __init__,
    __getitem__, and __len__.
    """

    @abstractmethod
    def __getitem__(self, index):
        raise IndexError

    def __iter__(self):
        i = 0
        try:
            while True:
                v = self[i]
                yield v
                i += 1
        except IndexError:
            return

    def __contains__(self, value):
        for v in self:
            if v == value:
                return True
        return False

    def __reversed__(self):
        for i in reversed(range(len(self))):
            yield self[i]

    def index(self, value):
        '''S.index(value) -> integer -- return first index of value.
           Raises ValueError if the value is not present.
        '''
        for i, v in enumerate(self):
            if v == value:
                return i
        raise ValueError

    def count(self, value):
        'S.count(value) -> integer -- return number of occurrences of value'
        return sum(1 for v in self if v == value)

Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)


class MutableSequence(Sequence):

    """All the operations on a read-only sequence.

    Concrete subclasses must provide __new__ or __init__,
    __getitem__, __setitem__, __delitem__, __len__, and insert().

    """

    @abstractmethod
    def __setitem__(self, index, value):
        raise IndexError

    @abstractmethod
    def __delitem__(self, index):
        raise IndexError

    @abstractmethod
    def insert(self, index, value):
        'S.insert(index, object) -- insert object before index'
        raise IndexError

    def append(self, value):
        'S.append(object) -- append object to the end of the sequence'
        self.insert(len(self), value)

    def reverse(self):
        'S.reverse() -- reverse *IN PLACE*'
        n = len(self)
        for i in range(n//2):
            self[i], self[n-i-1] = self[n-i-1], self[i]

    def extend(self, values):
        'S.extend(iterable) -- extend sequence by appending elements from the iterable'
        for v in values:
            self.append(v)

    def pop(self, index=-1):
        '''S.pop([index]) -> item -- remove and return item at index (default last).
           Raise IndexError if list is empty or index is out of range.
        '''
        v = self[index]
        del self[index]
        return v

    def remove(self, value):
        '''S.remove(value) -- remove first occurrence of value.
           Raise ValueError if the value is not present.
        '''
        del self[self.index(value)]

    def __iadd__(self, values):
        self.extend(values)
        return self

MutableSequence.register(list)




          

      

      

    

  

    
      
          
            
  All modules for which code is available

	_abcoll

	uncertainpy.core.base

	uncertainpy.core.parallel

	uncertainpy.core.run_model

	uncertainpy.core.uncertainty_calculations

	uncertainpy.data

	uncertainpy.distribution

	uncertainpy.features.efel_features

	uncertainpy.features.features

	uncertainpy.features.general_network_features

	uncertainpy.features.general_spiking_features

	uncertainpy.features.network_features

	uncertainpy.features.spikes

	uncertainpy.features.spiking_features

	uncertainpy.models.model

	uncertainpy.models.nest_model

	uncertainpy.models.neuron_model

	uncertainpy.parameters

	uncertainpy.plotting.plot_uncertainty

	uncertainpy.uncertainty

	uncertainpy.utils.logger

	uncertainpy.utils.utility




          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.data

from __future__ import absolute_import, division, print_function, unicode_literals

import six
import os
import collections

import numpy as np

from .utils.utility import contains_nan, is_regular
from .utils.logger import setup_module_logger, get_logger
from ._version import __version__


[docs]class DataFeature(collections.MutableMapping):
    """
    Store the results of each statistical metric calculated from the uncertainty
    quantification and sensitivity analysis for a single model/feature.

    The statistical metrics can be retrieved as attributes. Additionally, DataFeature
    implements all standard dictionary methods, such as items, value, contains
    and so implemented. This means it can be indexed as a regular dictionary
    with the statistical metric names as keys and returns the values for that
    statistical metric.

    Parameters
    ----------
    name : str
        Name of the model/feature.
    evaluations : {None, array_like}, optional.
        Feature or model result.
        Default is None.
    time : {None, array_like}, optional.
        Time evaluations for feature or model.
        Default is None.
    mean : {None, array_like}, optional.
        Mean of the feature or model results.
        Default is None.
    variance : {None, array_like}, optional.
        Variance of the feature or model results.
        Default is None.
    percentile_5 : {None, array_like}, optional.
        5 percentile of the feature or model results.
        Default is None.
    percentile_95 : {None, array_like}, optional.
        95 percentile of the feature or model results.
        Default is None.
    sobol_first : {None, array_like}, optional.
        First order sensitivity of the feature or model results.
        Default is None.
    sobol_first_average : {None, array_like}, optional.
        First order sensitivity of the feature or model results.
        Default is None.
    sobol_total : {None, array_like}, optional.
        Total effect sensitivity of the feature or model results.
        Default is None.
    sobol_total_average : {None, array_like}, optional.
        Average of the total effect sensitivity of
        the feature or model results.
        Default is None.
    labels : list, optional.
        A list of labels for plotting, ``[x-axis, y-axis, z-axis]``
        Default is ``[]``.

    Attributes
    ----------
    name : str
        Name of the model/feature.
    evaluations : {None, array_like}
        Feature or model output.
    time : {None, array_like}
        Time values for feature or model.
    mean : {None, array_like}
        Mean of the feature or model results.
    variance : {None, array_like}
        Variance of the feature or model results.
    percentile_5 : {None, array_like}
        5 percentile of the feature or model results.
    percentile_95 : {None, array_like}
        95 percentile of the feature or model results.
    sobol_first : {None, array_like}
        First order Sobol indices (sensitivity) of the feature or model results.
    sobol_first_average : {None, array_like}
        Average of the first order Sobol indices of the feature or model results.
    sobol_total : {None, array_like}
        Total order Sobol indices (sensitivity) of the feature or model results.
    sobol_total_average : {None, array_like}
        Average of the total order Sobol indices of the feature or model results.
    labels : list
        A list of labels for plotting, ``[x-axis, y-axis, z-axis]``.

    Notes
    -----
    The statistical metrics calculated in Uncertainpy are:

        * ``evaluations`` - the results from the model/feature evaluations.
        * ``time`` - the time of the model/feature.
        * ``mean`` - the mean of the model/feature.
        * ``variance``. - the variance of the model/feature.
        * ``percentile_5`` - the 5th percentile of the model/feature.
        * ``percentile_95`` - the 95th percentile of the model/feature.
        * ``sobol_first`` - the first order Sobol indices (sensitivity) of
          the model/feature.
        * ``sobol_first_average`` - the average of the first order Sobol
          indices (sensitivity) of the model/feature.
        * ``sobol_total`` - the total order Sobol indices (sensitivity)
          of the model/feature.
        * ``sobol_total_average`` - the average of the total order Sobol
          indices (sensitivity) of the model/feature.
    """
    def __init__(self,
                 name,
                 evaluations=None,
                 time=None,
                 mean=None,
                 variance=None,
                 percentile_5=None,
                 percentile_95=None,
                 sobol_first=None,
                 sobol_first_average=None,
                 sobol_total=None,
                 sobol_total_average=None,
                 labels=[]):

        self.name = name
        self.evaluations = evaluations
        self.time = time
        self.mean = mean
        self.variance = variance
        self.percentile_5 = percentile_5
        self.percentile_95 = percentile_95
        self.sobol_first = sobol_first
        self.sobol_first_average = sobol_first_average
        self.sobol_total = sobol_total
        self.sobol_total_average = sobol_total_average
        self.labels = labels

        self._statistical_metrics = ["evaluations", "time", "mean", "variance",
                                     "percentile_5", "percentile_95",
                                     "sobol_first", "sobol_first_average",
                                     "sobol_total", "sobol_total_average"]

        self._information = ["name", "labels"]

[docs]    def __getitem__(self, statistical_metric):
        """
        Get the data for `statistical_metric`.

        Parameters
        ----------
        statistical_metric: str
            Name of the statistical metric.

        Returns
        -------
        {array_like, None}
            The data for `statistical_metric`.
        """
        return getattr(self, statistical_metric)



[docs]    def get_metrics(self):
        """
        Get the names of all statistical metrics that contain data (not None).

        Returns
        -------
        list
           List of the names of all statistical metric that contain data.
        """
        statistical_metrics = []

        for statistical_metric in dir(self):
            if not statistical_metric.startswith('_') and not callable(self[statistical_metric]) \
                and self[statistical_metric] is not None and statistical_metric not in self._information:
                statistical_metrics.append(statistical_metric)

        return statistical_metrics



[docs]    def __setitem__(self, statistical_metric, data):
        """
        Set the data for the statistical metric.

        Parameters
        ----------
        statistical_metric: str
            Name of the statistical metric.
        data : {array_like, None}
            The data for the statistical metric.
        """
        setattr(self, statistical_metric, data)



[docs]    def __iter__(self):
        """
        Iterate over each statistical metric with data.

        Yields
        ------
        str
            Name of the statistical metric.
        """
        for statistical_metric in self.get_metrics():
            yield statistical_metric




[docs]    def __delitem__(self, statistical_metric):
        """
        Delete data for `statistical_metric` (set to None).

        Parameters
        ----------
        statistical_metric: str
            Name of the statistical metric.
        """
        setattr(self, statistical_metric, None)



[docs]    def __len__(self):
        """
        Get the number of data types with data.

        Returns
        -------
        int
            The number of data types with data.
        """
        return len(self.get_metrics())



    def __contains__(self, statistical_metric):
        """
        Check if `statistical_metric` exists and contains data (not None).

        Parameters
        ----------
        statistical_metric: str
            Name of the statistical metric.

        Returns
        -------
        bool
            If `statistical_metric` exists and contains data (not None)
        """
        if statistical_metric not in self.get_metrics() or self[statistical_metric] is None:
            return False
        else:
            return True


    def __str__(self):
        """
        Convert all data to a readable string.

        Returns
        -------
        str
           A human readable string of all statistical metrics.
        """
        output_str = ""
        for statistical_metric in self:
            output_str += "=== {statistical_metric} ===\n".format(statistical_metric=statistical_metric)
            output_str += "{data}\n\n".format(data=self[statistical_metric])


        return output_str.strip()

    # TODO: add test for a single evaluations list
[docs]    def ndim(self):
        """
        Get the number of dimensions the data of a data type. Returns None if no
        evaluations or all evaluations contain numpy.nan.

        Parameters
        ----------
        feature : str
            Name of the model or a feature.

        Returns
        -------
        int
            The number of dimensions of the data of the data type.
        """

        if self.evaluations is not None:
            for evaluation in self.evaluations:
                if not contains_nan(evaluation):
                    return np.ndim(evaluation)

        return None




[docs]class Data(collections.MutableMapping):
    """
    Store the results of each statistical metric calculated from the uncertainty
    quantification and sensitivity analysis for each model/features.

    Has all standard dictionary methods, such as items, value, contains
    and so implemented. Can be indexed as a regular dictionary with
    model/feature names as keys and returns a DataFeature object that contains
    the data for all statistical metrics for that model/feature.
    Additionally it contains information on how the calculations was performed

    Parameters
    ----------
    filename : str, optional
        Name of the file to load data from. If None, no data is loaded.
        Default is None.
    backend : {"auto", "hdf5", "exdir"}, optional
        The fileformat used to save and load data to/from file. "auto" assumes the
        filenamess ends with either ".h5" for HDF5 files or ".exdir" for Exdir files.
        If unknown fileextension defaults to saving as HDF5 files. "hdf5" saves
        and loads files from HDF5 files. "exdir" saves and loads files from
        Exdir files. Default is "auto".
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed
        Default logger level is "info".

    Attributes
    ----------
    uncertain_parameters : list
        A list of the uncertain parameters in the uncertainty quantification.
    model_name : str
        Name of the model.
    incomplete : list
        List of all model/features that have missing model/feature evaluations.
    error : list
        List of all model/features that were irregular, but not set to be
        interpolated.
    method : str
        A string that describes the method used to perform the uncertainty
        quantification.
    data : dictionary
        A dictionary with a DataFeature for each model/feature.
    data_information : list
        List of attributes containing additional information.


    Notes
    -----
    The statistical metrics calculated for each feature and model in Uncertainpy
    are:

        * ``evaluations`` - the results from the model/feature evaluations.
        * ``time`` - the time of the model/feature.
        * ``mean`` - the mean of the model/feature.
        * ``variance``. - the variance of the model/feature.
        * ``percentile_5`` - the 5th percentile of the model/feature.
        * ``percentile_95`` - the 95th percentile of the model/feature.
        * ``sobol_first`` - the first order Sobol indices (sensitivity) of
          the model/feature.
        * ``sobol_first_average`` - the average of the first order Sobol
          indices (sensitivity) of the model/feature.
        * ``sobol_total`` - the total order Sobol indices (sensitivity)
          of the model/feature.
        * ``sobol_total_average`` - the average of the total order Sobol
          indices (sensitivity) of the model/feature.

    Raises
    ------
    ValueError
        If unsupported backend is chosen.

    See also
    --------
    uncertainpy.DataFeature
    """
    def __init__(self,
                 filename=None,
                 backend="auto",
                 logger_level="info"):

        self.data_information = ["uncertain_parameters", "model_name",
                                 "incomplete", "method", "version", "seed",
                                 "model_ignore", "error"]


        if backend not in ["auto", "hdf5", "exdir"]:
            raise ValueError("backend {} not supported. Supported backends are: auto, hdf5, and exdir".format(backend))

        setup_module_logger(class_instance=self, level=logger_level)

        self.uncertain_parameters = []
        self.model_name = ""
        self.incomplete = []
        self.error = []
        self.data = {}
        self.method = ""
        self.model_ignore = False
        self._seed = ""
        self.backend = backend

        self.version = __version__

        if filename is not None:
            self.load(filename)


    @property
    def seed(self):
        """
        Seed used in the calculations.

        Parameters
        ----------
        new_seed : {None, int}
            Seed used in the calculations.
            If None, converted to "".

        Returns
        -------
        seed : {int, str}
            Seed used in the calculations.
        """
        return self._seed


    @seed.setter
    def seed(self, new_seed):
        if new_seed is None:
            self._seed = ""
        else:
            self._seed = new_seed


[docs]    def __str__(self):
        """
        Convert all data to a readable string.

        Returns
        -------
        str
           A human readable string of all stored data.
        """

        def border(msg):
            count = len(msg) + 6
            line = "="*(count + 2)
            string = """
{line}
|   {msg}   |
{line}\n\n""".format(line=line, msg=msg)
            return string

        output_str = border("Information")

        for info in self.data_information:
            current_info = getattr(self, info)
            output_str += "{info}: {current_info}\n".format(info=info,
                                                            current_info=current_info)

        for feature in self:
            output_str += border(feature)
            output_str += "=== labels ===\n"
            output_str += "{data}\n\n".format(data=self[feature].labels)
            output_str += str(self[feature]) + "\n"

        return output_str.strip()




[docs]    def clear(self):
        """
        Clear all data.
        """
        self.uncertain_parameters = []
        self.model_name = ""
        self.incomplete = []
        self.error = []
        self.data = {}
        self.method = ""
        self._seed = ""
        self.model_ignore = False
        self.version = __version__



[docs]    def ndim(self, feature):
        """
        Get the number of dimensions of a `feature`.

        Parameters
        ----------
        feature : str
            Name of the model or a feature.

        Returns
        -------
        int, None
            The number of dimensions of the model/feature result. Returns None
            if the feature has no evaluations or only contains nan.
        """
        return self[feature].ndim()




[docs]    def get_labels(self, feature):
        """
        Get labels for a `feature`. If no labels are defined,
        returns a list with the correct number of empty strings.

        Parameters
        ----------
        feature : str
            Name of the model or a feature.

        Returns
        -------
        list
            A list of labels for plotting, ``[x-axis, y-axis, z-axis]``.
            If no labels are defined (labels = []),
            returns a list with the correct number of empty strings.
        """
        if self[feature].labels != []:
            return self[feature].labels

        elif self[self.model_name].labels != [] and self[self.model_name].ndim() == self[feature].ndim():
            return self[self.model_name].labels

        else:
            return [""]*(self[feature].ndim() + 1)




[docs]    def __getitem__(self, feature):
        """
        Get the DataFeature containing the data for `feature`.

        Parameters
        ----------
        feature: str
            Name of feature/model.

        Returns
        -------
        DataFeature
            The DataFeature containing the data for `feature`.
        """
        return self.data[feature]


[docs]    def __setitem__(self, feature, data):
        """
        Set `data` for `feature`. `Data` must be a DataFeature object.

        Parameters
        ----------
        feature: str
            Name of feature/model.
        data : DataFeature
            DataFeature with the data for `feature`.

        Raises
        ------
        ValueError
            If `data` is not a DataFeature.
        """
        if not isinstance(data, DataFeature):
            raise ValueError("data must be of type DataFeature")
        self.data[feature] = data



[docs]    def __iter__(self):
        """
        Iterate over each feature/model that has not errored.

        Yields
        ------
        str
            Name of feature/model.
        """
        for d in self.data:
            if d not in self.error:
                yield d


        # return iter(self.data)


[docs]    def __delitem__(self, feature):
        """
        Delete data for `feature`.

        Parameters
        ----------
        feature: str
            Name of feature.
        """
        del self.data[feature]



[docs]    def __len__(self):
        """
        Get the number of model/features that have not errored.

        Returns
        -------
        int
            The number of model/features that have not errored.
        """
        return len(self.data) - len(self.error)



[docs]    def add_features(self, features):
        """
        Add features (which contain no data).

        Parameters
        ----------
        features : {str, list}
            Name of feature to add, or list of features to add.
        """
        if isinstance(features, six.string_types):
            features = [features]

        for feature in features:
            self.data[feature] = DataFeature(feature)



    # TODO expand the save function to also save parameters and model information
[docs]    def save(self, filename):
        """
        Save data to a HDF5 or Exdir file with name `filename`.

        Parameters
        ----------
        filename : str
            Name of the file to load data from.

        Raises
        ------
        ImportError
            If h5py is not installed.
        ImportError
            If Exdir is not installed.
        """
        logger = get_logger(self)

        if self.backend == "auto":
            if filename.endswith(".h5"):
                current_backend = "hdf5"
            elif filename.endswith(".exdir"):
                current_backend = "exdir"
            else:
                logger.warning("Unknown fileextension, defaulting to save {} as a HDF5 file.".format(filename))
                current_backend = "hdf5"
        else:
            current_backend = self.backend


        if current_backend == "hdf5":
            try:
                import h5py as backend
            except ImportError:
                raise ImportError("The HDF5 backend requires: h5py")

        elif current_backend == "exdir":
            try:
                import exdir.core as backend
            except ImportError:
                raise ImportError("The Exdir backend requires: exdir")



        def add_group(group, values, name="evaluation"):
            iteration = 0

            padding = len(str(len(values) + 1))

            for value in values:
                try:
                    group.create_dataset(name + "_{0:0{1}d}".format(iteration, padding), data=value)
                except (TypeError, ValueError):
                    new_group = group.create_group(name + "_{0:0{1}d}".format(iteration, padding))

                    if not name.startswith("sub_"):
                        new_name = "sub_" + name

                    add_group(new_group, value, name=new_name)

                iteration += 1



        # with backend.File(filename, "w") as f:
        f = backend.File(filename, "w")

        f.attrs["uncertain parameters"] =  [parameter.encode("utf8") for parameter in self.uncertain_parameters]
        f.attrs["model name"] = self.model_name
        f.attrs["incomplete results"] =  [incomplete.encode("utf8") for incomplete in self.incomplete]
        f.attrs["error"] =  [irregular.encode("utf8") for irregular in self.error]
        f.attrs["method"] = self.method
        f.attrs["version"] = self.version
        f.attrs["seed"] = self.seed
        f.attrs["model ignore"] = self.model_ignore


        for feature in self.data:
            group = f.create_group(feature)

            for statistical_metric in self[feature]:
                if statistical_metric in ["evaluations", "time"]:
                    if is_regular(self[feature][statistical_metric]):
                        group.create_dataset(statistical_metric, data=self[feature][statistical_metric])
                    else:
                        evaluations_group = group.create_group(statistical_metric)
                        add_group(evaluations_group, self[feature][statistical_metric], name=statistical_metric)
                else:
                    group.create_dataset(statistical_metric, data=self[feature][statistical_metric])

            group.create_dataset("labels", data=np.array([label.encode("utf8") for label in self[feature].labels]))

        f.close()



[docs]    def load(self, filename):
        """
        Load data from a HDF5 or Exdir file with name `filename`.

        Parameters
        ----------
        filename : str
            Name of the file to load data from.

        Raises
        ------
        ImportError
            If h5py is not installed.
        ImportError
            If Exdir is not installed.
        """
        logger = get_logger(self)

        if self.backend == "auto":
            if filename.endswith(".h5"):
                current_backend = "hdf5"
            elif filename.endswith(".exdir"):
                current_backend = "exdir"
            else:
                logger.warning("Unknown fileextension, defaulting to load {} from a HDF5 file.".format(filename))
                current_backend = "hdf5"

        else:
            current_backend = self.backend


        if current_backend == "hdf5":
            try:
                import h5py as backend
            except ImportError:
                raise ImportError("The HDF5 backend requires: h5py")

        elif current_backend == "exdir":
            try:
                import exdir.core as backend
            except ImportError:
                raise ImportError("The Exdir backend requires: exdir")


        # TODO add this check when changing to python 3
        # if not os.path.isfile(self.filename):
        #     raise FileNotFoundError("{} file not found".format(self.filename))
        self.clear()

        def append_evaluations(evaluations, group):
            sub_evaluations = []
            for item in group:
                value = group[item]
                if isinstance(value, backend.Dataset):
                    sub_evaluations.append(value[()])

                elif  isinstance(value, backend.Group):
                    append_evaluations(sub_evaluations, group)

            evaluations.append(sub_evaluations)


        # with backend.File(filename, "r") as f:
        f = backend.File(filename, "r")

        if "uncertain parameters" in f.attrs:
            try:
                self.uncertain_parameters = [parameter.decode("utf8") for parameter in f.attrs["uncertain parameters"]]
            except (UnicodeDecodeError, AttributeError):
                self.uncertain_parameters = [parameter for parameter in f.attrs["uncertain parameters"]]

        if "model name" in f.attrs:
            self.model_name = str(f.attrs["model name"])

        if "incomplete results" in f.attrs:
            try:
                self.incomplete = [incomplete.decode("utf8") for incomplete in f.attrs["incomplete results"]]
            except (UnicodeDecodeError, AttributeError):
                self.incomplete = [incomplete for incomplete in f.attrs["incomplete results"]]

        if "error" in f.attrs:
            try:
                self.error =  [irregular.decode("utf8") for irregular in f.attrs["error"]]
            except (UnicodeDecodeError, AttributeError):
                self.error =  [irregular for irregular in f.attrs["error"]]

        if "method" in f.attrs:
            self.method = str(f.attrs["method"])

        if "version" in f.attrs:
            self.version = str(f.attrs["version"])

        if "seed" in f.attrs:
            self.seed = f.attrs["seed"]

        if "model ignore" in f.attrs:
            self.model_ignore = f.attrs["model ignore"]


        for feature in f:
            self.add_features(str(feature))
            for statistical_metric in f[feature]:


                if statistical_metric in ["evaluations", "time"]:
                    values = f[feature][statistical_metric]

                    if isinstance(values, backend.Dataset):
                        evaluations = values[()]
                    else:
                        evaluations = []

                        for item in f[feature][statistical_metric]:
                            value = f[feature][statistical_metric][item]

                            if isinstance(value, backend.Dataset):
                                evaluations.append(value[()])
                            elif  isinstance(value, backend.Group):
                                append_evaluations(evaluations, value)

                    self[feature][statistical_metric] = evaluations
                elif statistical_metric == "labels":
                    self[feature][statistical_metric] = [label.decode("utf8") for label in f[feature][statistical_metric][()]]
                else:
                    self[feature][statistical_metric] = f[feature][statistical_metric][()]

        f.close()



[docs]    def remove_only_invalid_features(self):
        """
        Remove all features that only have invalid results (NaN).
        """

        feature_list = list(self.data.keys())
        for feature in feature_list:
            all_nan = True
            for U in self[feature].evaluations:
                if not np.all(np.isnan(U)):
                    all_nan = False

            if all_nan:
                logger = get_logger(self)
                logger.warning("Feature: {} does".format(feature)
                               + " not yield results for any parameter combinations")

                del self[feature]







          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.distribution

from __future__ import absolute_import, division, print_function, unicode_literals

import chaospy as cp

"""
Functions (that work as closures) used to set the distribution of a
parameter to an `interval` around their original value.
"""

[docs]def uniform(interval):
    """
    A closure that creates a function that takes a `parameter` as input and
    returns a uniform distribution with `interval` around `parameter`.

    Parameters
    ----------
    interval : int, float
        The interval of the uniform distribution around `parameter`.

    Returns
    -------
    distribution : function
        A function that takes `parameter` as input and returns a
        uniform distribution with `interval` around this `parameter`.


    Notes
    -----
    This function ultimately calculates:

    .. code-block:: Python

        cp.Uniform(parameter - abs(interval/2.*parameter),
                   parameter + abs(interval/2.*parameter)).
    """
    def distribution(parameter):
        if parameter == 0:
            raise ValueError("Creating a percentage distribution around 0 does not work")

        return cp.Uniform(parameter - abs(interval/2.*parameter),
                          parameter + abs(interval/2.*parameter))
    return distribution



[docs]def normal(interval):
    """
    A closure that creates a function that takes a `parameter` as input and
    returns a Gaussian distribution with standard deviation `interval*parameter`
    around `parameter`.

    Parameters
    ----------
    interval : int, float
        The interval of the standard deviation ``interval*parameter`` for the
        Gaussian distribution.

    Returns
    -------
    distribution : function
        A function that takes a `parameter` as input and
        returns a Gaussian distribution standard deviation ``interval*parameter``.

    Notes
    -----
    This function ultimately calculates:

    .. code-block:: Python

        cp.Normal(parameter, abs(interval*parameter))
    """
    def distribution(parameter):
        if parameter == 0:
            raise ValueError("Creating a percentage distribution around 0 does not work")

        return cp.Normal(parameter, abs(interval*parameter))
    return distribution





          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.parameters

from __future__ import absolute_import, division, print_function, unicode_literals

import six
import re
import fileinput
import sys
import collections

import chaospy as cp


__all__ = ["Parameters", "Parameter"]

[docs]class Parameter(object):
    """
    Parameter object, contains name of parameter, value of parameter and distribution of parameter.

    Parameters
    ----------
    name: str
        Name of the parameter.
    value: float, int, None
        The fixed value of the parameter. If you give a parameter a distribution,
        in most cases you do not need to give it a fixed value.
    distribution: {None, Chaospy distribution, Function that returns a Chaospy distribution}, optional
        The distribution of the parameter. A parameter is considered uncertain
        if it has a distribution.
        Defaults to None.


    Attributes
    ----------
    name: str
        Name of the parameter.
    value: float, int
        The value of the parameter.
    distribution : uncertainpy.Parameter.distribution
        The distribution of the parameter. A parameter is considered uncertain
        if it has a distribution.
    """

    def __init__(self, name, value=None, distribution=None):
        self.name = name
        self.value = value

        self._distribution = None

        self.distribution = distribution


    @property
    def distribution(self):
        """
        A Chaospy distribution or a function that returns a Chaospy distribution.
        If None the parameter has no distribution and is not considered uncertain.

        Parameters
        ----------
        distribution: {None, Chaospy distribution, callable that returns a Chaospy distribution}, optional
            The distribution of the parameter, used if the parameter is uncertain
            If it is a callable that returns a Chaospy distribution, the
            function sends `value` value to the function.
            Defaults to None.

        Returns
        -------
        distribution: {Chaospy distribution, None}
            The distribution of the parameter, if None the
            parameter has no distribution and is not considered uncertain.
        """
        return self._distribution

    @distribution.setter
    def distribution(self, new_distribution):
        if new_distribution is None:
            self._distribution = None
        elif isinstance(new_distribution, cp.Distribution):
            self._distribution = new_distribution
        elif hasattr(new_distribution, '__call__'):
            if self.value is None:
                raise ValueError("The value of this parameter is None. A function cannot be created with new_distribution(self.value).")

            self._distribution = new_distribution(self.value)
            if not isinstance(self._distribution, cp.Distribution):
                raise TypeError("Function new_distribution does not return a Chaospy distribution")
        else:
            raise TypeError("new_distribution is neither a function nor a Chaospy distribution")



[docs]    def set_parameter_file(self, filename, value):
        """
        Set parameters to given value in a parameter file.

        Search `filename` for occurrences of ``name = number``
        and replace ``number`` with `value`.

        Parameters
        ----------
        filename: str
            Name of file.
        value: float, int
            New value to set in parameter file.
        """
        search_string = r"(\A|\b)(" + self.name + r")(\s*=\s*)((([+-]?\d+[.]?\d*)|([+-]?\d*[.]?\d+))([eE][+-]?\d+)*)($|\b)"
        pattern = re.compile(search_string)

        for line in fileinput.input(filename, inplace=True):
            sys.stdout.write(pattern.sub(r"\g<1>\g<2>\g<3>" + str(value), line))



[docs]    def reset_parameter_file(self, filename):
        """
        Set all parameters to the original value in the parameter file, `filename`.

        Parameters
        ----------
        filename: str
            Name of file.
        """
        if self.value is None:
            raise ValueError("The value of this parameter is None. The parameter file cannot be reset.")


        self.set_parameter_file(filename, self.value)



[docs]    def __str__(self):
        """
        Return a readable string describing the parameter.

        Returns
        -------
        str
            A string containing ``name``, ``value``, and if a parameter is uncertain.
        """
        if self.distribution is None:
            uncertain = ""
        else:
            uncertain = " - Uncertain"

        return "{parameter}: {value}{uncertain}".format(parameter=self.name, value=self.value, uncertain=uncertain)







[docs]class Parameters(collections.MutableMapping):
    """
    A collection of parameters.

    Has all standard dictionary methods implemented, such as items, value,
    contains and similar implemented. As such, behaves as an ordered dictionary.

    Parameters
    ----------
    parameters: {dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, ...], list of Parameter instances, list [[name, value or Chaospy distribution], ...], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],...],}
        List or dictionary of the parameters that should be created.
        On the form ``parameters =``

            * ``{name_1: parameter_object_1, name: parameter_object_2, ...}``
            * ``{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}``
            * ``[parameter_object_1, parameter_object_2, ...]``,
            * ``[[name_1, value_1 or Chaospy distribution], ...]``.
            * ``[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]``

    distribution: {None, multivariate Chaospy distribution}, optional
        A multivariate distribution of all parameters, if it exists, it is used
        instead of individual distributions.
        Defaults to None.

    Attributes
    ----------
    parameters: dict
        A dictionary of parameters with ``name`` as key and Parameter object as value.
    distribution: {None, multivariate Chaospy distribution}, optional
        A multivariate distribution of all parameters, if it exists, it is used
        instead of individual distributions. Defaults to None.

    Notes
    -----
    Both parameter values and parameter distributions must be set if
    uncertainpy.UncertaintyQuantification.quantify is run with single=True,
    meaning the uncertainty quantification should be performed with only one
    uncertain parameter at the time.

    See Also
    --------
    uncertainpy.Parameter
    """
    def __init__(self, parameters={}, distribution=None):

        self.parameters = collections.OrderedDict()
        self.distribution = distribution


        try:
            # Handle dict
            if isinstance(parameters, dict):
                for parameter in parameters:
                    if isinstance(parameters[parameter], Parameter):
                        self.parameters[parameter] = parameters[parameter]
                    else:
                        if isinstance(parameters[parameter], cp.Distribution):
                            self.parameters[parameter] = Parameter(parameter, distribution=parameters[parameter])
                        else:
                                self.parameters[parameter] = Parameter(parameter, value=parameters[parameter])

            else:
                # Handle lists
                for parameter in parameters:
                    if isinstance(parameter, Parameter):
                        self.parameters[parameter.name] = parameter
                    else:
                        if len(parameter) == 2:
                            if isinstance(parameter[1], cp.Distribution):
                                self.parameters[parameter[0]] = Parameter(parameter[0], distribution=parameter[1])
                            else:
                                self.parameters[parameter[0]] = Parameter(parameter[0], value=parameter[1])
                        else:
                            self.parameters[parameter[0]] = Parameter(*parameter)
        except TypeError as error:
            msg = "Input to parameters is on the wrong format."
            if not error.args:
                error.args = ("",)
            error.args = error.args + (msg,)
            raise


[docs]    def __getitem__(self, name):
        """
        Return Parameter object with `name`.

        Parameters
        ----------
        name: str
            Name of parameter.

        Returns
        -------
        Parameter object
            The parameter object with `name`.
        """
        return self.parameters[name]



[docs]    def __iter__(self):
        """
        Iterate over the parameter objects.

        Yields
        ------
        Parameter object
            A parameter object.
        """

        return iter(self.parameters.values())


[docs]    def __str__(self):
        """
        Convert all parameters to a readable string.

        Returns
        -------
        str
           A readable string of all parameter objects.
        """
        result = ""
        for name in self.parameters.keys():
            result += str(self.parameters[name]) + "\n"

        return result.strip()



[docs]    def __len__(self):
        """
        Get the number of parameters.

        Returns
        -------
        int
            The number of parameters.
        """
        return len(self.parameters)



[docs]    def __setitem__(self, name, parameter):
        """
        Set parameter with `name`.

        Parameters
        ----------
        name: str
            Name of parameter.
        parameter: Parameter object
            The parameter object of `name`.
        """

        if not isinstance(parameter, Parameter):
            raise ValueError("parameter must be an instance of Parameter")
        self.parameters[name] = parameter



[docs]    def __delitem__(self, name):
        """
        Delete parameter with `name`.

        Parameters
        ----------
        name: str
            Name of parameter.
        """

        del self.parameters[name]



[docs]    def set_distribution(self, parameter, distribution):
        """
        Set the distribution of a parameter.

        Parameters
        ----------
        parameter: str
            Name of parameter.
        distribution: {None, Chaospy distribution, Function that returns a Chaospy distribution}
            The distribution of the parameter.
        """
        self.parameters[parameter].distribution = distribution



[docs]    def set_all_distributions(self, distribution):
        """
        Set the distribution of all parameters.

        Parameters
        ----------
        distribution: {None, Chaospy distribution, Function that returns a Chaospy distribution}
            The distribution of the parameter.
        """
        for parameter in self.parameters:
            self.parameters[parameter].distribution = distribution



[docs]    def get_from_uncertain(self, attribute="name"):
        """
        Return attributes from uncertain parameters.

        Return a list of attributes (``name``, ``value``, or ``distribution``) from
        each uncertain parameters (parameters that have a distribution).

        Parameters
        ----------
        attribute: {"name", "value", "distribution"}, optional
            The name of the attribute to be returned from each uncertain parameter.
            Default is `name`.

        Returns
        -------
        list
            List containing the `attribute` of each uncertain parameters.
        """

        items = []
        for parameter in self.parameters.values():
            if parameter.distribution is not None:
                items.append(getattr(parameter, attribute))

        return items



[docs]    def get(self, attribute="name", parameter_names=None):
        """
        Return attributes from all parameters.

        Return a list of attributes (``name``, ``value``, or ``distribution``) from
        each parameters (parameters that have a distribution).

        Parameters
        ----------
        attribute: {"name", "value", "distribution"}, optional
            The name of the attribute to be returned from each uncertain parameter. Default is `name`.
        parameter_names: {None, list, str}, optional
            A list of all parameters of which attribute should be returned,
            or a string for a single parameter.
            If None, the attribute all parameters are returned.
            Default is None.

        Returns
        -------
        list
            List containing the `attribute` of each parameters.
        """

        if parameter_names is None:
            parameter_names = self.parameters.keys()

        if isinstance(parameter_names, six.string_types):
            parameter_names = [parameter_names]

        return_parameters = []
        for parameter_name in parameter_names:
            return_parameters.append(self.parameters[parameter_name])

        return [getattr(parameter, attribute) for parameter in return_parameters]



[docs]    def set_parameters_file(self, filename, parameters):
        """
        Set listed parameters to their value in a parameter file.

        For each parameter listed in `parameters`, search `filename` for occurrences of
        ``parameter_name = number`` and replace ``number`` with value of that parameter.

        Parameters
        ----------
        filename: str
            Name of file.
        parameters: list
            List of parameter names.
        """
        for parameter in parameters:
            self.parameters[parameter].set_parameter_file(filename, parameters[parameter])



[docs]    def reset_parameter_file(self, filename):
        """
        Set all parameters to their value in a parameter file.

        For all parameters, search `filename` for occurrences of
        ``parameter_name = number`` and replace ``number`` with value of that parameter.

        Parameters
        ----------
        filename: str
            Name of file.
        """
        for parameter in self.parameters:
            self.parameters[parameter].set_parameter_file(filename, self.parameters[parameter].value)






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.uncertainty

from __future__ import absolute_import, division, print_function, unicode_literals

import os
import platform
import numpy as np

from .core.uncertainty_calculations import UncertaintyCalculations
from .plotting.plot_uncertainty import PlotUncertainty
from .utils.logger import get_logger, add_file_handler
from .data import Data
from .core.base import ParameterBase


[docs]class UncertaintyQuantification(ParameterBase):
    """
    Perform an uncertainty quantification and sensitivity analysis of a model
    and features of the model.

    It implements both quasi-Monte Carlo methods and polynomial chaos expansions
    using either point collocation or the pseudo-spectral method. Both of the
    polynomial chaos expansion methods have support for the rosenblatt
    transformation to handle dependent input parameters.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    parameters : {None, Parameters instance, list of Parameter instances, list with [[name, value, distribution], ...]}
        Either None, a Parameters instance or a list of the parameters that should be created.
        The two lists are similar to the arguments sent to Parameters.
        Default is None.
    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all will be calculated.
        Default is None.
    uncertainty_calculations : UncertaintyCalculations or UncertaintyCalculations subclass instance, optional
        An UncertaintyCalculations class or subclass that implements (custom)
        uncertainty quantification and sensitivity analysis methods.
    create_PCE_custom : callable, optional
        A custom method for calculating the polynomial chaos approximation.
        For the requirements of the function see
        ``UncertaintyCalculations.create_PCE_custom``. Overwrites existing
        ``create_PCE_custom`` method.
        Default is None.
    custom_uncertainty_quantification : callable, optional
        A custom method for calculating uncertainties.
        For the requirements of the function see
        ``UncertaintyCalculations.custom_uncertainty_quantification``.
        Overwrites existing ``custom_uncertainty_quantification`` method.
        Default is None.
    CPUs : {int, None, "max"}, optional
        The number of CPUs to use when calculating the model and features.
        If None, no multiprocessing is used.
        If "max", the maximum number of CPUs on the computer
        (multiprocess.cpu_count()) is used.
        Default is "max".
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed
        Default logger level is "info".
    logger_filename : str
        Name of the logfile. If None, no logging to file is performed. Default is
        "uncertainpy.log".
    backend : {"auto", "hdf5", "exdir"}, optional
        The fileformat used to save and load data to/from file. "auto" assumes the
        filenames ends with either ".h5" for HDF5 files or ".exdir" for Exdir files.
        If unknown fileextension defaults to saving data as HDF5 files. "hdf5" saves
        and loads files from HDF5 files. "exdir" saves and loads files from
        Exdir files. Default is "auto".

    Attributes
    ----------
    model : Model or Model subclass
        The model to perform uncertainty quantification on.
    parameters : Parameters
        The uncertain parameters.
    features : Features or Features subclass
        The features of the model to perform uncertainty quantification on.
    uncertainty_calculations : UncertaintyCalculations or UncertaintyCalculations subclass
        UncertaintyCalculations object responsible for performing the uncertainty
        quantification calculations.
    data : Data
        A data object that contains the results from the uncertainty quantification.
        Contains all model and feature evaluations, as well as all calculated
        statistical metrics.

    Raises
    ------
    ValueError
        If unsupported backend is chosen.

    See Also
    --------
    uncertainpy.features
    uncertainpy.Parameter
    uncertainpy.Parameters
    uncertainpy.models
    uncertainpy.core.UncertaintyCalculations
    uncertainpy.core.UncertaintyCalculations.create_PCE_custom : Requirements for create_PCE_custom
    uncertainpy.models.Model.run : Requirements for the model run function.
    """
    def __init__(self,
                 model,
                 parameters,
                 features=None,
                 uncertainty_calculations=None,
                 create_PCE_custom=None,
                 custom_uncertainty_quantification=None,
                 CPUs="max",
                 logger_level="info",
                 logger_filename="uncertainpy.log",
                 backend="auto"):


        if backend not in ["auto", "hdf5", "exdir"]:
            raise ValueError("backend {} not supported. Supported backends are: auto, hdf5, and exdir".format(backend))


        logger = get_logger(self)

        if platform.system().lower() == "windows":
            logger.info("On Windows machines everything in your script must be "
                        "inside of an if __name__ == '__main__': block in order "
                        "for multiprocess to work." )

        if uncertainty_calculations is None:
            self._uncertainty_calculations = UncertaintyCalculations(
                model=model,
                parameters=parameters,
                features=features,
                create_PCE_custom=create_PCE_custom,
                custom_uncertainty_quantification=custom_uncertainty_quantification,
                CPUs=CPUs,
                logger_level=logger_level,
            )
        else:
            self._uncertainty_calculations = uncertainty_calculations

        super(UncertaintyQuantification, self).__init__(parameters=parameters,
                                                        model=model,
                                                        features=features,
                                                        logger_level=logger_level)


        self.data = None
        self.backend = backend

        self.plotting = PlotUncertainty(folder=None,
                                        logger_level=logger_level)

        add_file_handler(filename=logger_filename)


    @ParameterBase.features.setter
    def features(self, new_features):
        ParameterBase.features.fset(self, new_features)

        self.uncertainty_calculations.features = self.features


    @ParameterBase.model.setter
    def model(self, new_model):
        ParameterBase.model.fset(self, new_model)

        self.uncertainty_calculations.model = self.model


    @ParameterBase.parameters.setter
    def parameters(self, new_parameters):
        ParameterBase.parameters.fset(self, new_parameters)

        self.uncertainty_calculations.parameters = self.parameters


    @property
    def uncertainty_calculations(self):
        """
        The class for performing the calculations for the uncertainty
        quantification and sensitivity analysis.

        Parameters
        ----------
        new_uncertainty_calculations : UncertaintyCalculations or UncertaintyCalculations subclass instance
            New UncertaintyCalculations object responsible for performing the uncertainty
            quantification calculations.

        Returns
        -------
        uncertainty_calculations : UncertaintyCalculations or UncertaintyCalculations subclass instance
            UncertaintyCalculations object responsible for performing the uncertainty
            quantification calculations.

        See Also
        --------
        uncertainpy.core.UncertaintyCalculations
        """
        return self._uncertainty_calculations


    @uncertainty_calculations.setter
    def uncertainty_calculations(self, new_uncertainty_calculations):
        self._uncertainty_calculations = new_uncertainty_calculations

        self.uncertainty_calculations.features = self.features
        self.uncertainty_calculations.model = self.model


    # TODO add features_to_run as argument to this function
[docs]    def quantify(self,
                 method="pc",
                 pc_method="collocation",
                 rosenblatt="auto",
                 uncertain_parameters=None,
                 polynomial_order=4,
                 nr_collocation_nodes=None,
                 quadrature_order=None,
                 nr_pc_mc_samples=10**4,
                 nr_mc_samples=10**4,
                 allow_incomplete=True,
                 seed=None,
                 single=False,
                 plot="condensed_first",
                 figure_folder="figures",
                 figureformat=".png",
                 save=True,
                 data_folder="data",
                 filename=None,
                 **custom_kwargs):
        """
        Perform an uncertainty quantification and sensitivity analysis
        using polynomial chaos expansions or quasi-Monte Carlo methods.

        Parameters
        ----------
        method : {"pc", "mc", "custom"}, optional
            The method to use when performing the uncertainty quantification and
            sensitivity analysis.
            "pc" is polynomial chaos method, "mc" is the quasi-Monte Carlo
            method and "custom" are custom uncertainty quantification methods.
            Default is "pc".
        pc_method : {"collocation", "spectral", "custom"}, optional
            The method to use when creating the polynomial chaos approximation,
            if the polynomial chaos method is chosen. "collocation" is the
            point collocation method "spectral" is pseudo-spectral projection,
            and "custom" is the custom polynomial method.
            Default is "collocation".
        rosenblatt : {"auto", bool}, optional
            If the Rosenblatt transformation should be used. The Rosenblatt
            transformation must be used if the uncertain parameters have
            dependent variables. If "auto" the Rosenblatt transformation is used
            if there are dependent parameters, and it is not used of the
            parameters have independent distributions. Default is "auto".
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when performing the uncertainty
            quantification. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose, if polynomial chaos with
            point collocation is used. If None,
            `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method, if polynomial chaos with
            pseudo-spectral projection is used. If None,
            ``quadrature_order = polynomial_order + 2``.
            Default is None.
        nr_pc_mc_samples : int, optional
            Number of samples for the Monte Carlo sampling of the polynomial
            chaos approximation, if the polynomial chaos method is chosen.
            Default is 10**4.
        nr_mc_samples : int, optional
            Number of samples for the quasi-Monte Carlo sampling, if the quasi-Monte
            Carlo method is chosen. `nr_mc_samples` is used for the uncertainty
            quantification and ``(nr_mc_samples/2)*(nr_uncertain_parameters + 2)``
            samples is used for the sensitivity analysis. Default `nr_mc_samples`
            is 10**4.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        single : bool
            If an uncertainty quantification should be performed with only one
            uncertain parameter at the time. Requires that the values of
            each parameter is set. Default is False.
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data. Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.
        **custom_kwargs
            Any number of arguments for either the custom polynomial chaos method,
            ``create_PCE_custom``, or the custom uncertainty quantification,
            ``custom_uncertainty_quantification``.

        Returns
        -------
        data : Data, dict containing data objects
            A data object that contains the results from the uncertainty quantification.
            Contains all model and feature evaluations, as well as all calculated
            statistical metrics. If `single` = True, then returns a dictionary
            that contains the data objects for each single parameter
            calculation.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.
        ValueError
            If `method` not one of "pc", "mc" or "custom".
        ValueError
            If `pc_method` not one of "collocation", "spectral" or "custom".
        NotImplementedError
            If custom method or custom pc method is chosen and have not been
            implemented.

        Notes
        -----
        Which method to choose is problem dependent, but as long as the number of
        uncertain parameters is low (less than around 20 uncertain parameters)
        polynomial chaos methods are much faster than Monte Carlo methods.
        Above this Monte Carlo methods are the best.

        For polynomial chaos, the pseudo-spectral method is faster than point
        collocation, but has lower stability. We therefore generally recommend
        the point collocation method.

        The model and feature do not necessarily give results for each
        node. The collocation method and quasi-Monte Carlo methods are robust
        towards missing values as long as the number of results that remain is
        high enough. The pseudo-spectral method on the other hand, is sensitive
        to missing values, so `allow_incomplete` should be used with care in
        that case.

        In the quasi-Monte Carlo method we quasi-randomly draw
        ``(nr_mc_samples/2)*(nr_uncertain_parameters + 2)``
        (nr_mc_samples=10**4 by default) parameter samples using Saltelli's
        sampling scheme. We require this number of samples to be able to calculate
        the Sobol indices. We evaluate the model for each of these parameter
        samples and calculate the features from each of the model results. This
        step is performed in parallel to speed up the calculations. Then we use
        `nr_mc_samples` of the model and feature results to calculate the
        mean, variance, and 5th and 95th percentile for the model and each
        feature. Lastly, we use all calculated model and each feature results to
        calculate the Sobol indices using Saltellie's approach.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        Changing the parameters of the polynomial chaos methods should be done
        with care, and implementing custom methods is only recommended for
        experts.

        See also
        --------
        uncertainpy.Parameters
        uncertainpy.Data
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.core.UncertaintyCalculations.polynomial_chaos : Uncertainty quantification using polynomial chaos expansions
        uncertainpy.core.UncertaintyCalculations.monte_carlo : Uncertainty quantification using quasi-Monte Carlo methods
        uncertainpy.core.UncertaintyCalculations.create_PCE_custom : Requirements for create_PCE_custom
        uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification : Requirements for custom_uncertainty_quantification
        """
        uncertain_parameters = self.uncertainty_calculations.convert_uncertain_parameters(uncertain_parameters)

        if method.lower() == "pc":
            if single:
                data = self.polynomial_chaos_single(uncertain_parameters=uncertain_parameters,
                                                    method=pc_method,
                                                    rosenblatt=rosenblatt,
                                                    polynomial_order=polynomial_order,
                                                    nr_collocation_nodes=nr_collocation_nodes,
                                                    quadrature_order=quadrature_order,
                                                    nr_pc_mc_samples=nr_pc_mc_samples,
                                                    allow_incomplete=allow_incomplete,
                                                    seed=seed,
                                                    plot=plot,
                                                    figure_folder=figure_folder,
                                                    figureformat=figureformat,
                                                    save=save,
                                                    data_folder=data_folder,
                                                    filename=filename,
                                                    **custom_kwargs)

            else:
                data = self.polynomial_chaos(uncertain_parameters=uncertain_parameters,
                                             method=pc_method,
                                             rosenblatt=rosenblatt,
                                             polynomial_order=polynomial_order,
                                             nr_collocation_nodes=nr_collocation_nodes,
                                             quadrature_order=quadrature_order,
                                             nr_pc_mc_samples=nr_pc_mc_samples,
                                             allow_incomplete=allow_incomplete,
                                             seed=seed,
                                             plot=plot,
                                             figure_folder=figure_folder,
                                             figureformat=figureformat,
                                             save=save,
                                             data_folder=data_folder,
                                             filename=filename,
                                             **custom_kwargs)

        elif method.lower() == "mc":
            if single:
                data = self.monte_carlo_single(uncertain_parameters=uncertain_parameters,
                                               nr_samples=nr_mc_samples,
                                               plot=plot,
                                               figure_folder=figure_folder,
                                               figureformat=figureformat,
                                               save=save,
                                               data_folder=data_folder,
                                               filename=filename,
                                               seed=seed)


            else:
                data = self.monte_carlo(uncertain_parameters=uncertain_parameters,
                                        nr_samples=nr_mc_samples,
                                        plot=plot,
                                        figure_folder=figure_folder,
                                        figureformat=figureformat,
                                        save=save,
                                        data_folder=data_folder,
                                        filename=filename,
                                        seed=seed)


        elif method.lower() == "custom":
            data = self.custom_uncertainty_quantification(plot=plot,
                                                          figure_folder=figure_folder,
                                                          figureformat=figureformat,
                                                          save=save,
                                                          data_folder=data_folder,
                                                          filename=filename,
                                                          **custom_kwargs)

        else:
            raise ValueError("No method with name {}".format(method))

        return data



[docs]    def custom_uncertainty_quantification(self,
                                          plot="condensed_first",
                                          figure_folder="figures",
                                          figureformat=".png",
                                          save=True,
                                          data_folder="data",
                                          filename=None,
                                          **custom_kwargs):
        """
        Perform a custom  uncertainty quantification and sensitivity analysis,
        implemented by the user.

        Parameters
        ----------
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data.
            Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.
        **custom_kwargs
            Any number of arguments for the custom uncertainty quantification.

        Raises
        ------
        NotImplementedError
            If the custom uncertainty quantification method have not been
            implemented.

        Notes
        -----
        For details on how to implement the custom uncertainty quantification
        method see UncertaintyCalculations.custom_uncertainty_quantification.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        See also
        --------
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.Parameters
        uncertainpy.core.UncertaintyCalculations.custom_uncertainty_quantification : Requirements for custom_uncertainty_quantification
        """

        self.data = self.uncertainty_calculations.custom_uncertainty_quantification(**custom_kwargs)

        self.data.backend = self.backend


        if filename is None:
            filename = self.model.name

        if save:
            self.save(filename, folder=data_folder)

        self.plot(type=plot,
                  folder=figure_folder,
                  figureformat=figureformat)

        return self.data



[docs]    def polynomial_chaos(self,
                         method="collocation",
                         rosenblatt="auto",
                         uncertain_parameters=None,
                         polynomial_order=4,
                         nr_collocation_nodes=None,
                         quadrature_order=None,
                         nr_pc_mc_samples=10**4,
                         allow_incomplete=True,
                         seed=None,
                         plot="condensed_first",
                         figure_folder="figures",
                         figureformat=".png",
                         save=True,
                         data_folder="data",
                         filename=None,
                         **custom_kwargs):
        """
        Perform an uncertainty quantification and sensitivity analysis
        using polynomial chaos expansions.

        Parameters
        ----------
        method : {"collocation", "spectral", "custom"}, optional
            The method to use when creating the polynomial chaos approximation,
            if the polynomial chaos method is chosen. "collocation" is the
            point collocation method "spectral" is pseudo-spectral projection,
            and "custom" is the custom polynomial method.
            Default is "collocation".
        rosenblatt : {"auto", bool}, optional
            If the Rosenblatt transformation should be used. The Rosenblatt
            transformation must be used if the uncertain parameters have
            dependent variables. If "auto" the Rosenblatt transformation is used
            if there are dependent parameters, and it is not used of the
            parameters have independent distributions. Default is "auto".
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when performing the uncertainty
            quantification. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose, if polynomial chaos with
            point collocation is used. If None,
            `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method, if polynomial chaos with
            pseudo-spectral projection is used. If None,
            ``quadrature_order = polynomial_order + 2``.
            Default is None.
        nr_pc_mc_samples : int, optional
            Number of samples for the Monte Carlo sampling of the polynomial
            chaos approximation, if the polynomial chaos method is chosen.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data.
            Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.
        **custom_kwargs
            Any number of arguments for the custom polynomial chaos method,
            ``create_PCE_custom``.

        Returns
        -------
        data : Data
            A data object that contains the results from the uncertainty quantification.
            Contains all model and feature evaluations, as well as all calculated
            statistical metrics.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.
        ValueError
            If `method` not one of "collocation", "spectral" or "custom".
        NotImplementedError
            If custom pc method is chosen and have not been implemented.

        Notes
        -----
        Which method to choose is problem dependent, but as long as the number of
        uncertain parameters is low (less than around 20 uncertain parameters)
        polynomial chaos methods are much faster than Monte Carlo methods.
        Above this Monte Carlo methods are the best.

        For polynomial chaos, the pseudo-spectral method is faster than point
        collocation, but has lower stability. We therefore generally recommend
        the point collocation method.

        The model and feature do not necessarily give results for each
        node. The collocation method are robust towards missing values as long
        as the number of results that remain is high enough. The pseudo-spectral
        method on the other hand, is sensitive to missing values, so
        `allow_incomplete` should be used with care in that case.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        Changing the parameters of the polynomial chaos methods should be done
        with care, and implementing custom methods is only recommended for
        experts.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.core.UncertaintyCalculations.polynomial_chaos : Uncertainty quantification using polynomial chaos expansions
        uncertainpy.core.UncertaintyCalculations.create_PCE_custom : Requirements for create_PCE_custom
        """
        uncertain_parameters = self.uncertainty_calculations.convert_uncertain_parameters(uncertain_parameters)

        if len(uncertain_parameters) > 20:
            raise RuntimeWarning("The number of uncertain parameters is high."
                                 + "The Monte-Carlo method might be faster.")


        self.data = self.uncertainty_calculations.polynomial_chaos(
            method=method,
            rosenblatt=rosenblatt,
            uncertain_parameters=uncertain_parameters,
            polynomial_order=polynomial_order,
            nr_collocation_nodes=nr_collocation_nodes,
            quadrature_order=quadrature_order,
            nr_pc_mc_samples=nr_pc_mc_samples,
            allow_incomplete=allow_incomplete,
            seed=seed,
            **custom_kwargs
            )

        self.data.backend = self.backend

        if filename is None:
            filename = self.model.name

        if save:
            self.save(filename, folder=data_folder)

        self.plot(type=plot,
                  folder=figure_folder,
                  figureformat=figureformat)

        return self.data



[docs]    def monte_carlo(self,
                    uncertain_parameters=None,
                    nr_samples=10**4,
                    seed=None,
                    plot="condensed_first",
                    figure_folder="figures",
                    figureformat=".png",
                    save=True,
                    data_folder="data",
                    filename=None):
        """
        Perform an uncertainty quantification using the quasi-Monte Carlo method.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when performing the uncertainty
            quantification. If None, all uncertain parameters are used.
            Default is None.
        nr_samples : int, optional
            Number of samples for the quasi-Monte Carlo sampling.
            `nr_samples` is used for the uncertainty
            quantification and ``(nr_samples/2)*(nr_uncertain_parameters + 2)``
            samples is used for the sensitivity analysis. Default `nr_samples`
            is 10**4.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data.
            Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.

        Returns
        -------
        data : Data
            A data object that contains the results from the uncertainty quantification.
            Contains all model and feature evaluations, as well as all calculated
            statistical metrics.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        Which method to choose is problem dependent, but as long as the number of
        uncertain parameters is low (less than around 20 uncertain parameters)
        polynomial chaos methods are much faster than Monte Carlo methods.
        Above this Monte Carlo methods are the best.

        In the quasi-Monte Carlo method we quasi-randomly draw
        ``(nr_samples/2)*(nr_uncertain_parameters + 2)``
        (nr_samples=10**4 by default) parameter samples using Saltelli's
        sampling scheme. We require this number of samples to be able to calculate
        the Sobol indices. We evaluate the model for each of these parameter
        samples and calculate the features from each of the model results. This
        step is performed in parallel to speed up the calculations. Then we use
        `nr_samples` of the model and feature results to calculate the
        mean, variance, and 5th and 95th percentile for the model and each
        feature. Lastly, we use all calculated model and each feature results to
        calculate the Sobol indices using Saltellie's approach.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        Sensitivity analysis is currently not yet available for the quasi-Monte
        Carlo method.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.core.UncertaintyCalculations.monte_carlo : Uncertainty quantification using quasi-Monte Carlo methods
        """
        uncertain_parameters = self.uncertainty_calculations.convert_uncertain_parameters(uncertain_parameters)


        self.data = self.uncertainty_calculations.monte_carlo(uncertain_parameters=uncertain_parameters,
                                                              nr_samples=nr_samples,
                                                              seed=seed)

        self.data.backend = self.backend

        if filename is None:
           filename = self.model.name

        if save:
            self.save(filename, folder=data_folder)

        self.plot(type=plot,
                  folder=figure_folder,
                  figureformat=figureformat)

        return self.data



[docs]    def polynomial_chaos_single(self,
                                method="collocation",
                                rosenblatt="auto",
                                polynomial_order=4,
                                uncertain_parameters=None,
                                nr_collocation_nodes=None,
                                quadrature_order=None,
                                nr_pc_mc_samples=10**4,
                                allow_incomplete=True,
                                seed=None,
                                plot="condensed_first",
                                figure_folder="figures",
                                figureformat=".png",
                                save=True,
                                data_folder="data",
                                filename=None):
        """
        Perform an uncertainty quantification and sensitivity analysis for a
        single parameter at the time using polynomial chaos expansions.

        Parameters
        ----------
        method : {"collocation", "spectral", "custom"}, optional
            The method to use when creating the polynomial chaos approximation,
            if the polynomial chaos method is chosen. "collocation" is the
            point collocation method "spectral" is pseudo-spectral projection,
            and "custom" is the custom polynomial method.
            Default is "collocation".
        rosenblatt : {"auto", bool}, optional
            If the Rosenblatt transformation should be used. The Rosenblatt
            transformation must be used if the uncertain parameters have
            dependent variables. If "auto" the Rosenblatt transformation is used
            if there are dependent parameters, and it is not used of the
            parameters have independent distributions. Default is "auto".
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to performing the uncertainty
            quantification for. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose, if polynomial chaos with
            point collocation is used. If None,
            `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method, if polynomial chaos with
            pseudo-spectral projection is used. If None,
            ``quadrature_order = polynomial_order + 2``.
            Default is None.
        nr_pc_mc_samples : int, optional
            Number of samples for the Monte Carlo sampling of the polynomial
            chaos approximation, if the polynomial chaos method is chosen.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data.
            Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.
        **custom_kwargs
            Any number of arguments for the custom polynomial chaos method,
            ``create_PCE_custom``.

        Returns
        -------
        data_dict : dict
            A dictionary that contains the data for each single parameter
            calculation.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.
        ValueError
            If `method` not one of "collocation", "spectral" or "custom".
        NotImplementedError
            If custom pc method is chosen and have not been implemented.

        Notes
        -----
        Which method to choose is problem dependent, but as long as the number of
        uncertain parameters is low (less than around 20 uncertain parameters)
        polynomial chaos methods are much faster than Monte Carlo methods.
        Above this Monte Carlo methods are the best.

        For polynomial chaos, the pseudo-spectral method is faster than point
        collocation, but has lower stability. We therefore generally recommend
        the point collocation method.

        The model and feature do not necessarily give results for each
        node. The collocation method are robust towards missing values as long
        as the number of results that remain is high enough. The pseudo-spectral
        method on the other hand, is sensitive to missing values, so
        `allow_incomplete` should be used with care in that case.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        Changing the parameters of the polynomial chaos methods should be done
        with care, and implementing custom methods is only recommended for
        experts.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.core.UncertaintyCalculations.polynomial_chaos : Uncertainty quantification using polynomial chaos expansions
        uncertainpy.core.UncertaintyCalculations.create_PCE_custom : Requirements for create_PCE_custom

        """
        logger = get_logger(self)

        uncertain_parameters = self.uncertainty_calculations.convert_uncertain_parameters(uncertain_parameters)

        for parameter in self.parameters:
            if parameter.value is None:
                raise ValueError("Parameter.value must be set for each parameter when using single=True.")

        if filename is None:
            filename = self.model.name

        if seed is not None:
            np.random.seed(seed)

        data_dict = {}

        for uncertain_parameter in uncertain_parameters:
            logger.info("Running for " + uncertain_parameter)

            data = self.uncertainty_calculations.polynomial_chaos(
                uncertain_parameters=uncertain_parameter,
                method=method,
                rosenblatt=rosenblatt,
                polynomial_order=polynomial_order,
                nr_collocation_nodes=nr_collocation_nodes,
                quadrature_order=quadrature_order,
                nr_pc_mc_samples=nr_pc_mc_samples,
                allow_incomplete=allow_incomplete,
            )

            data.backend = self.backend
            data.seed = seed
            self.data = data

            data_dict[uncertain_parameter] = data

        self.data = data_dict

        if save:
            self.save(filename, folder=data_folder)

        self.plot(type=plot,
                  folder=figure_folder,
                  figureformat=figureformat)

        return data_dict



[docs]    def monte_carlo_single(self,
                           uncertain_parameters=None,
                           nr_samples=10**4,
                           seed=None,
                           plot="condensed_first",
                           save=True,
                           data_folder="data",
                           figure_folder="figures",
                           figureformat=".png",
                           filename=None):
        """
        Perform an uncertainty quantification for a single parameter at the time
        using the quasi-Monte Carlo method.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when performing the uncertainty
            quantification. If None, all uncertain parameters are used.
            Default is None.
        nr_samples : int, optional
            Number of samples for the quasi-Monte Carlo sampling.
            `nr_samples` is used for the uncertainty
            quantification and ``(nr_samples/2)*(nr_uncertain_parameters + 2)``
            samples is used for the sensitivity analysis. Default `nr_samples`
            is 10**4.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        plot : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing.
            Default is "condensed_first".
        figure_folder : str, optional
            Name of the folder where to save all figures.
            Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib.
            Default is ".png".
        save : bool, optional
            If the data should be saved. Default is True.
        data_folder : str, optional
            Name of the folder where to save the data.
            Default is "data".
        filename : {None, str}, optional
            Name of the data file. If None the model name is used.
            Default is None.

        Returns
        -------
        data_dict : dict
            A dictionary that contains the data objects for each single parameter
            calculation.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        Which method to choose is problem dependent, but as long as the number of
        uncertain parameters is low (less than around 20 uncertain parameters)
        polynomial chaos methods are much faster than Monte Carlo methods.
        Above this Monte Carlo methods are the best.

        In the quasi-Monte Carlo method we quasi-randomly draw
        ``(nr_samples/2)*(nr_uncertain_parameters + 2)``
        (nr_samples=10**4 by default) parameter samples using Saltelli's
        sampling scheme. We require this number of samples to be able to calculate
        the Sobol indices. We evaluate the model for each of these parameter
        samples and calculate the features from each of the model results. This
        step is performed in parallel to speed up the calculations. Then we use
        `nr_samples` of the model and feature results to calculate the
        mean, variance, and 5th and 95th percentile for the model and each
        feature. Lastly, we use all calculated model and each feature results to
        calculate the Sobol indices using Saltellie's approach.

        The plots created are intended as quick way to get an overview of the
        results, and not to create publication ready plots. Custom plots of the
        data can easily be created by retrieving the data from the Data class.

        Sensitivity analysis is currently not yet available for the quasi-Monte
        Carlo method.

        See also
        --------
        uncertainpy.Data
        uncertainpy.plotting.PlotUncertainty
        uncertainpy.Parameters
        uncertainpy.core.UncertaintyCalculations.monte_carlo : Uncertainty quantification using quasi-Monte Carlo methods
        """
        logger = get_logger(self)

        uncertain_parameters = self.uncertainty_calculations.convert_uncertain_parameters(uncertain_parameters)

        if filename is None:
            filename = self.model.name

        if seed is not None:
            np.random.seed(seed)

        data_dict = {}
        for uncertain_parameter in uncertain_parameters:
            logger.info("Running MC for " + uncertain_parameter)

            data = self.uncertainty_calculations.monte_carlo(uncertain_parameters=uncertain_parameter,
                                                                  nr_samples=nr_samples)

            data.backend = self.backend
            data.seed = seed

            data_dict[uncertain_parameter] = data

        self.data = data_dict

        if save:
            self.save(filename, folder=data_folder)

        self.plot(type=plot,
                  folder=figure_folder,
                  figureformat=figureformat)

        return data_dict



[docs]    def save(self, filename, folder="data"):
        """
        Save ``data`` to disk.

        Parameters
        ----------
        filename : str
            Name of the data file.
        folder : str, optional
            The folder to store the data in. Creates the folder if it does not
            exist. Default is "/data".

        See also
        --------
        uncertainpy.Data : Data class
        """
        if not os.path.isdir(folder):
            os.makedirs(folder)

        logger = get_logger(self)

        fileextension = ""
        if self.backend == "auto":
            if filename.endswith(".h5"):
                fileextension = ".h5"
                filename = filename.strip(".h5")
            elif filename.endswith(".exdir"):
                fileextension = ".exdir"
                filename = filename.strip(".exdir")
            else:
                fileextension = ".h5"

        elif self.backend == "hdf5":
            fileextension =  ".h5"
            filename = filename.strip(".h5")
        elif self.backend == "exdir":
            fileextension = ".exdir"
            filename = filename.strip(".exdir")

        # To save dict of single parameter runs
        if isinstance(self.data, dict):
            for uncertain_parameter in self.data:
                tmp_filename = "{}_{}".format(
                    filename,
                    uncertain_parameter
                )

                save_path = os.path.join(folder, tmp_filename + fileextension)

                logger.info("Saving data as: {}".format(save_path))

                self.data[uncertain_parameter].save(save_path)

        else:
            save_path = os.path.join(folder, filename + fileextension)

            logger.info("Saving data as: {}".format(save_path))

            self.data.save(save_path)





[docs]    def load(self, filename):
        """
        Load data from disk.

        Parameters
        ----------
        filename : str
            Name of the stored data file.

        See also
        --------
        uncertainpy.Data : Data class
        """
        self.data = Data(filename)



[docs]    def plot(self,
             type="condensed_first",
             folder="figures",
             figureformat=".png"):
        """
        Create plots for the results of the uncertainty quantification and
        sensitivity analysis. ``self.data`` must exist and contain the results.

        Parameters
        ----------
        data : Data
            A data object that contains the results from the uncertainty quantification.
        type : {"condensed_first", "condensed_total", "condensed_no_sensitivity", "all", "evaluations", None}, optional
            Type of plots to be created.
            "condensed_first" is a subset of the most important plots and
            only plots each result once, and contains plots of the first order
            Sobol indices. "condensed_total" is similar, but with the
            total order Sobol indices, and "condensed_no_sensitivity" is the
            same without any Sobol indices plotted. "all" creates every plot.
            "evaluations" plots the model and feature evaluations. None plots
            nothing. Default is "condensed_first".
        folder : str
            Name of the folder where to save all figures. Default is "figures".
        figureformat : str
            The figure format to save the plots in. Supports all formats in
            matplolib. Default is ".png".

        Notes
        -----
        These plots are intended as quick way to get an overview of the results,
        and not to create publication ready plots. Custom plots of the data can
        easily be created by retrieving the data from the Data class.

        See also
        --------
        uncertainpy.Data
        uncertainpy.plotting.PlotUncertainty
        """

        def plot(type):
            if type.lower() == "condensed_first":
                self.plotting.plot_condensed(sensitivity="sobol_first")

            elif type.lower() == "condensed_total":
                self.plotting.plot_condensed(sensitivity="sobol_total")

            elif type.lower() == "condensed_no_sensitivity":
                self.plotting.plot_condensed(sensitivity=None)

            elif type.lower() == "all":
                self.plotting.plot_all_sensitivities()
                self.plotting.all_evaluations()

            elif type.lower() == "evaluations":
                self.plotting.all_evaluations()

            else:
                raise ValueError('type must one of: "condensed_first", '
                                 '"condensed_total", "condensed_no_sensitivity" '
                                 '"all", "evaluations", None, not {}'.format(type))


        if type is None:
            return
        else:
            self.plotting.figureformat = figureformat

            # To plot dict of single parameter runs
            if isinstance(self.data, dict):
                for uncertain_parameter in self.data:
                    tmp_folder = os.path.join(folder, uncertain_parameter)

                    self.plotting.folder = tmp_folder
                    self.plotting.data = self.data[uncertain_parameter]

                    plot(type)

            else:
                self.plotting.folder = folder
                self.plotting.data = self.data

                plot(type)







          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.core.base

from __future__ import absolute_import, division, print_function, unicode_literals

from ..utils.logger import setup_module_logger
from ..features import Features
from ..models import Model
from ..parameters import Parameters




[docs]class Base(object):
    """
    Set and update features and model.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}, optional
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all listed features will be calculated.
        Default is None.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    model : uncertainpy.Model or subclass of uncertainpy.Model
        The model to perform uncertainty quantification on.
    features : uncertainpy.Features or subclass of uncertainpy.Features
        The features of the model to perform uncertainty quantification on.

    See Also
    --------
    uncertainpy.features.Features
    uncertainpy.models.Model
    uncertainpy.models.Model.run : Requirements for the model run function.
    """
    def __init__(self,
                 model=None,
                 features=None,
                 logger_level="info"):

        setup_module_logger(class_instance=self, level=logger_level)

        self._model = None
        self._features = None

        self._logger_level = logger_level

        self.features = features
        self.model = model



    @property
    def features(self):
        """
        Features to calculate from the model result.

        Parameters
        ----------
        new_features : {None, Features or Features subclass instance, list of feature functions}
            Features to calculate from the model result.
            If None, no features are calculated.
            If list of feature functions, all will be calculated.

        Returns
        -------
        features : {None, Features object}
             Features to calculate from the model result.
             If None, no features are calculated.

        See Also
        --------
        uncertainpy.features.Features
        uncertainpy.features.GeneralSpikingFeatures
        uncertainpy.features.SpikingFeatures
        uncertainpy.features.GeneralNetworkFeatures
        uncertainpy.features.NetworkFeatures
        """
        return self._features


    @features.setter
    def features(self, new_features):
        if isinstance(new_features, Features):
            self._features = new_features
        else:
            self._features = Features(new_features=new_features,
                                      logger_level=self._logger_level)


    @property
    def model(self):
        """
        Model to perform uncertainty quantification on. For requirements see
        Model.run.

        Parameters
        ----------
        new_model : {None, Model or Model subclass instance, model function}
            Model to perform uncertainty quantification on.

        Returns
        -------
        model : Model or Model subclass instance
            Model to perform uncertainty quantification on.

        See Also
        --------
        uncertainpy.models.Model
        uncertainpy.models.Model.run
        uncertainpy.models.NestModel
        uncertainpy.models.NeuronModel
        """
        return self._model

    @model.setter
    def model(self, new_model):
        if isinstance(new_model, Model) or new_model is None:
            self._model = new_model
        elif callable(new_model):
            self._model = Model(new_model,
                                logger_level=self._logger_level)
        else:
            raise TypeError("model must be a Model or Model subclass instance, callable or None")




[docs]class ParameterBase(Base):
    """
    Set and update features, model and parameters.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}, optional
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    parameters: {dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, ...], list of Parameter instances, list [[name, value or Chaospy distribution], ...], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],...],}
        List or dictionary of the parameters that should be created.
        On the form ``parameters =``

            * ``{name_1: parameter_object_1, name: parameter_object_2, ...}``
            * ``{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}``
            * ``[parameter_object_1, parameter_object_2, ...]``,
            * ``[[name_1, value_1 or Chaospy distribution], ...]``.
            * ``[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]``

    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all will be calculated.
        Default is None.
    logger_level : {"info", "debug", "warning", "error", "critical"}, optional
        Set the threshold for the logging level.
        Logging messages less severe than this level is ignored.
        Default is `"info"`.

    Attributes
    ----------
    model : Model or Model subclass
        The model to perform uncertainty quantification on.
    parameters : Parameters
        The uncertain parameters.
    features : Features or subclass of Features
        The features of the model to perform uncertainty quantification on.
    logger_level : {"info", "debug", "warning", "error", "critical", None}
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.

    See Also
    --------
    uncertainpy.features.Features
    uncertainpy.models.Model
    uncertainpy.models.Model.run : Requirements for the model run function.
    """
    def __init__(self,
                 model=None,
                 parameters=None,
                 features=None,
                 logger_level="info"):

        super(ParameterBase, self).__init__(model=model,
                                            features=features,
                                            logger_level=logger_level)

        self._parameters = None
        self.parameters = parameters



    @property
    def parameters(self):
        """
        Model parameters.

        Parameters
        ----------
        new_parameters : {None, Parameters instance, list of Parameter instances, list [[name, value, distribution], ...]}
            Either None, a Parameters instance or a list of the parameters that should be created.
            The two lists are similar to the arguments sent to Parameters.
            Default is None.

        Returns
        -------
        parameters: {None, Parameters}
            Parameters of the model.
            If None, no parameters have been set.

        See Also
        --------
        uncertainpy.Parameter
        uncertainpy.Parameters
        """
        return self._parameters


    @parameters.setter
    def parameters(self, new_parameters):
        if isinstance(new_parameters, Parameters) or new_parameters is None:
            self._parameters = new_parameters
        else:
            self._parameters = Parameters(new_parameters)





          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.core.parallel

from __future__ import absolute_import, division, print_function, unicode_literals

import traceback
import warnings
import logging

import numpy as np
import scipy.interpolate as scpi

from .base import Base
from ..utils.utility import none_to_nan, contains_nan, is_regular
from ..utils.logger import get_logger

[docs]class Parallel(Base):
    """
    Calculates the model and features of the model for one set of
    model parameters. Is the class that is run in parallel.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}, optional
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all will be calculated.
        Default is None.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed
        Default logger level is "info".

    Attributes
    ----------
    model : uncertainpy.Parallel.model
    features : uncertainpy.Parallel.features

    See Also
    --------
    uncertainpy.features.Features
    uncertainpy.models.Model
    uncertainpy.models.Model.run : Requirements for the model run function.
    """

[docs]    def create_interpolations(self, result):
        """
        Create an interpolation.

        Model or feature `result` s that have a varying number of time steps,
        are interpolated. Interpolation is only performed for one
        dimensional `result`. Zero dimensional `result` does not need to be
        interpolated, and support for interpolating two dimensional and above
        `result` have currently not been implemented.
        Adds a `"interpolation"` key-value pair to `result`.

        Parameters
        ----------
        result : dict
            The model and feature results. The model and each feature each has
            a dictionary with the time values, ``"time"``,  and model/feature
            results, ``"values"``.
            An example:

            .. code-block:: Python

                result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                       "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

        Returns
        -------
        result : dict
            If an interpolation has been created, those features/model have
            "interpolation" and the corresponding interpolation object added to
            each features/model dictionary.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                              "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}


        Notes
        -----
        If either model or feature results are irregular, the results must be
        interpolated for Chaospy to be able to create the polynomial
        approximation. For 1D results this is done with scipy:
        ``InterpolatedUnivariateSpline(time, U, k=3)``.
        """
        logger = get_logger(self)

        for feature in result:
            if feature in self.features.interpolate or \
                (feature == self.model.name and self.model.interpolate and not self.model.ignore):

                # This does not ignore shape differences due to np.nan results
                if not is_regular(result[feature]["values"]):
                     raise ValueError("{}: values within one evaluation is irregular,".format(feature) +
                                      " unable to perform interpolation.")

                if not is_regular(result[feature]["time"]):
                    raise ValueError("{}: times within one evaluation is irregular,".format(feature) +
                                     " unable to perform interpolation.")


                if np.ndim(result[feature]["values"]) == 0:
                        logger.warning("{feature} ".format(feature=feature) +
                                       "gives a 0D result. No interpolation performed")


                elif np.ndim(result[feature]["values"]) == 1:
                    result[feature]["interpolation"] = self.interpolation_1d(result, feature)



                elif np.ndim(result[feature]["values"]) >= 2:
                    # TODO implement interpolation of >= 2d data, part 1
                    raise NotImplementedError("{feature}: ".format(feature=feature)
                                            + " no support for >= 2D interpolation")

        return result



[docs]    def interpolation_1d(self, result, feature):
        """
        Create an interpolation for an 1D result.

        Parameters
        ----------
        result : dict
            The model and feature results. The model and each feature each has
            a dictionary with the time values, ``"time"``,  and model/feature
            results, ``"values"``.
            An example:

            .. code-block:: Python

                result = {model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                       "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

        Returns
        -------
        interpolation : {scipy.interpolate.fitpack2.InterpolatedUnivariateSpline, None}
            The result of the interpolation. If either the time or values contain
            None or numpy.nan, None is returned.

        Raises
        ------
        ValueError
            If the values of the feature are not 1D.
        ValueError
            If the time of the feature is not 1D.


        Notes
        -----
        The interpolation is performed using scipy:
        ``InterpolatedUnivariateSpline(time, values, k=3)``.
        """
        logger = get_logger(self)

        interpolation = None
        if np.ndim(result[feature]["values"]) != 1:
            raise ValueError("Cannot create 1D interpolation as the values of {} are not 1D".format(feature))

        if np.ndim(result[feature]["time"]) != 1:
            raise ValueError("Cannot create 1D interpolation as the time of {} is not 1D".format(feature))


        if contains_nan(result[feature]["values"]):
            msg = "{}: values contains np.nan or None values, unable to create 1D interpolation.".format(feature)
            logger.warning(msg)

        elif contains_nan(result[feature]["time"]):
            msg =  "{}: time contains np.nan or None values, unable to create 1D interpolation.".format(feature)
            logger.warning(msg)

        else:
            try:
                interpolation = scpi.InterpolatedUnivariateSpline(result[feature]["time"],
                                                                  result[feature]["values"],
                                                                  k=3)
            except Exception as error:
                msg = "{}: unable to interpolate using scipy.interpolate.InterpolatedUnivariateSpline(time, values, k=3)".format(feature)
                if not error.args:
                    error.args = ("",)
                error.args = error.args + (msg,)
                raise

        return interpolation





[docs]    def run(self, model_parameters):
        """
        Run a model and calculate features from the model output,
        return the results.

        The model is run and each feature of the model is calculated from the
        model output, `time` (time values) and `values` (model result). The
        results are interpolated if they are irregular, meaning they return a
        varying number of steps. An interpolation is created and added to
        results for the model/features that are irregular. Each instance of None
        is converted to ``numpy.nan``.

        Parameters
        ----------
        model_parameters : dictionary
            All model parameters as a dictionary. These parameters are sent to
            model.run().

        Returns
        -------
        result : dictionary
            The model and feature results. The model and each feature each has
            a dictionary with the time values, ``"time"``,  and model/feature results, ``"values"``.
            If an interpolation has been created, those features/model also has
            ``"interpolation"`` added. An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

        Notes
        -----
        Time `time` and result `values` are calculated from the model. Then sent to
        model.postprocess, and the postprocessed result from model.postprocess
        is added to result.
        `time` and `values` are sent to features.preprocess and the preprocessed results
        is used to calculate each feature.

        See also
        --------
        uncertainpy.utils.utility.none_to_nan : Method for converting from None to NaN
        uncertainpy.features.Features.preprocess : preprocessing model results before features are calculated
        uncertainpy.models.Model.postprocess : posteprocessing of model results
        """
        # logger = get_logger(self)

        # Try-except to catch exceptions and print stack trace
        try:

            # model_result = self.model.run(**model_parameters, **self.model.model_kwargs)
            # self.model.validate_run(model_result)

            model_result = self.model.evaluate(**model_parameters)

            results = {}

            if self.model.ignore:
                time_postprocess, values_postprocess = model_result[:2]

            else:
                postprocess_result = self.model.postprocess(*model_result)

                self.model.validate_postprocess(model_result)

                time_postprocess, values_postprocess = postprocess_result

            values_postprocess = none_to_nan(values_postprocess)
            time_postprocess = none_to_nan(time_postprocess)

            results[self.model.name] = {"time": time_postprocess,
                                        "values": values_postprocess}


        except Exception as error:
            print("")
            print("Caught exception when running/postprocessing model: {} in parallel:".format(self.model.name))
            print("===================================================================")
            traceback.print_exc()
            print("===================================================================")
            print("")
            raise

        try:
            # Calculate features from the model results
            feature_results = self.features.calculate_features(*model_result)

            for feature in feature_results:
                time_feature = feature_results[feature]["time"]
                values_feature = feature_results[feature]["values"]

                time_feature = none_to_nan(time_feature)
                values_feature = none_to_nan(values_feature)

                results[feature] = {"values": values_feature,
                                    "time": time_feature}

            # Create interpolations
            results = self.create_interpolations(results)

            return results

        except Exception as error:
            print("")
            print("Caught exception when calculating/postprocessing features of model: {} in parallel:".format(self.model.name))
            print("===================================================================")
            traceback.print_exc()
            print("===================================================================")
            print("")
            raise







          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.core.run_model

from __future__ import absolute_import, division, print_function, unicode_literals

import warnings
import six

try:
    from itertools import imap
except ImportError:
    imap = map

from tqdm import tqdm
import numpy as np

try:
    from xvfbwrapper import Xvfb

    prerequisites = True
except ImportError:
    prerequisites = False

from ..data import Data
from ..utils.utility import lengths, contains_nan
from ..utils.logger import get_logger
from .base import ParameterBase
from .parallel import Parallel



[docs]class RunModel(ParameterBase):
    """
    Calculate model and feature results for a series of different model parameters,
    and store them in a Data object.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}, optional
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    parameters: {dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, ...], list of Parameter instances, list [[name, value or Chaospy distribution], ...], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],...],}
        List or dictionary of the parameters that should be created.
        On the form ``parameters =``

            * ``{name_1: parameter_object_1, name: parameter_object_2, ...}``
            * ``{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}``
            * ``[parameter_object_1, parameter_object_2, ...]``,
            * ``[[name_1, value_1 or Chaospy distribution], ...]``.
            * ``[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]``

    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all will be calculated.
        Default is None.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed.
        Default logger level is "info".
    CPUs : {int, None, "max"}, optional
        The number of CPUs to use when calculating the model and features.
        If None, no multiprocessing is used.
        If "max", the maximum number of CPUs on the computer
        (multiprocess.cpu_count()) is used.
        Default is "max".


    Attributes
    ----------
    model : uncertainpy.Model or subclass of uncertainpy.Model
        The model to perform uncertainty quantification on.
    parameters : uncertainpy.Parameters
        The uncertain parameters.
    features : uncertainpy.Features or subclass of uncertainpy.Features
        The features of the model to perform uncertainty quantification on.
    CPUs : int
        The number of CPUs used when calculating the model and features.

    See Also
    --------
    uncertainpy.features.Features
    uncertainpy.Parameter
    uncertainpy.Parameters
    uncertainpy.models.Model
    uncertainpy.models.Model.run : Requirements for the model run function.
    """

    def __init__(self,
                 model,
                 parameters,
                 features=None,
                 logger_level="info",
                 CPUs="max"):

        if CPUs == "max":
            import multiprocess

            CPUs = multiprocess.cpu_count()


        self._parallel = Parallel(model=model,
                                  features=features,
                                  logger_level=logger_level)

        super(RunModel, self).__init__(model=model,
                                       parameters=parameters,
                                       features=features,
                                       logger_level=logger_level)

        self.CPUs = CPUs


    @ParameterBase.features.setter
    def features(self, new_features):
        ParameterBase.features.fset(self, new_features)

        self._parallel.features = self.features


    @ParameterBase.model.setter
    def model(self, new_model):
        ParameterBase.model.fset(self, new_model)

        self._parallel.model = self.model


[docs]    def apply_interpolation(self, results, feature):
        """
        Perform interpolation of one model/feature using the interpolation
        objects created by Parallel.

        Parameters
        ----------
        results : list
            A list where each element is a result dictionary for each set
            of model evaluations.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        feature: str
            Name of a feature or the model.

        Returns
        -------
        time : array_like
            The time array with the greatest number of time steps.
        interpolated_results : list
            A list containing all interpolated model/features results.
            Interpolated at the points of the time results with the greatest
            number of time steps.

        Notes
        -----
        Chooses the time array with the highest number of time points and use
        this time array to interpolate the model/feature results in each of
        those points. If an interpolation is None, gives numpy.nan instead.
        """
        logger = get_logger(self)

        time_lengths = []
        for result in results:
            time_lengths.append(len(result[feature]["time"]))

        index_max_len = np.argmax(time_lengths)
        time = results[index_max_len][feature]["time"]

        interpolated_results = []
        for result in results:
            interpolation = result[feature]["interpolation"]

            if interpolation is None:
                interpolated_results.append(np.nan)
                logger.error("{}: Unknown error while creating the interpolation".format(feature))

            elif isinstance(interpolation, six.string_types):
                interpolated_results.append(np.nan)
                logger.error(interpolation)

            else:
                interpolated_results.append(interpolation(time))

        return time, interpolated_results






[docs]    def results_to_data(self, results):
        """
        Store `results` in a Data object.

        Stores the time and (interpolated) results for the model and each
        feature in a Data object. Performs the interpolation calculated in
        Parallel, if the result is irregular.

        Parameters
        ----------
        results : list
            A list where each element is a result dictionary for each set
            of model evaluations.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        Returns
        -------
        data : Data object
            A Data object with time and (interpolated) results for the model and
            each feature.

        Notes
        -----
        Sets the following in data, if applicable:
        1. ``data["model/features"].evaluations``, which contains all ``values``
        2. ``data["model/features"].time``
        3. ``data["model/features"].labels``
        4. ``data.model_name``

        See Also
        --------
        uncertainpy.Data
        """
        logger = get_logger(self)

        data = Data(logger_level=self._logger_level)

        # Add features and labels
        for feature in results[0]:
            data.add_features(feature)

            if feature == self.model.name:
                data[feature]["labels"] = self.model.labels
            elif feature in self.features.labels:
                data[feature]["labels"] = self.features.labels[feature]

        data.model_name = self.model.name
        data.model_ignore = self.model.ignore

        def add_results(results, data, feature):
            data[feature].time = []
            data[feature].evaluations = []

            for result in results:
                data[feature].evaluations.append(result[feature]["values"])
                data[feature].time.append(result[feature]["time"])

        # results = self.regularize_nan_results(results)

        # Check if features are irregular without being specified as a interpolate
        # TODO if the feature is irregular, perform the complete interpolation here instead
        # for feature in data:
        #     if (feature == self.model.name and not (self.model.ignore or self.model.interpolate)) \
        #         or (feature != self.model.name and feature not in self.features.interpolate):
        #             if not self.is_regular(results, feature):
        #                 data.error.append(feature)
        #                 data[feature].time = []
        #                 data[feature].evaluations = []

        #                 for result in results:
        #                     data[feature].evaluations.append(result[feature]["values"])
        #                     data[feature].time.append(result[feature]["time"])

                        # raise ValueError("{}: The number of points varies between evaluations.".format(feature)
                        #                  + " Try setting interpolate".format(feature))


        # Store all results in data, interpolate as needed
        # TODO: save raw result instead of interpolated result?
        for feature in data:
            # Interpolate the data if it is irregular, and ignore the model if required
            if feature in self.features.interpolate or \
                    (feature == self.model.name and self.model.interpolate and not self.model.ignore):
                # TODO implement interpolation of >= 2d data, part2
                if np.ndim(results[0][feature]["values"]) >= 2:
                    # raise NotImplementedError("Feature: {feature},".format(feature=feature)
                    #                           + " no support for >= 2D interpolation")
                    logger.error("{feature}:".format(feature=feature)
                                 + " no support for >= 2D interpolation implemented")

                    add_results(results, data, feature)


                elif np.ndim(results[0][feature]["values"]) == 1:
                    data[feature].time, data[feature].evaluations = self.apply_interpolation(results, feature)

                # Interpolating a 0D result makes no sense, so if a 0D feature
                # is supposed to be interpolated store it as normal
                elif np.ndim(results[0][feature]["values"]) == 0:
                    logger.warning("{feature}: ".format(feature=feature) +
                                   "returns a 0D result. No interpolation is performed.")

                    data[feature].time = results[0][feature]["time"]

                    data[feature].evaluations = []
                    for result in results:
                        data[feature].evaluations.append(result[feature]["values"])


            elif feature == self.model.name and self.model.ignore:
                add_results(results, data, feature)

            else:
                # Check if features are irregular without being specified as a interpolate
                # TODO if the feature is irregular, perform the complete interpolation here instead
                if not self.is_regular(results, feature):
                    data.error.append(feature)

                    add_results(results, data, feature)

                    if feature == self.model.name:
                        msg = "{}: The number of points varies between evaluations. ".format(feature) + \
                              "Make sure {} returns the same number of points with different parameters, ".format(feature) + \
                              "implement Model.postprocess, or try to set interpolate=True."
                    else:
                        msg = "{}: The number of points varies between evaluations. ".format(feature) + \
                              "Make sure {} returns the same number of points, ".format(feature) + \
                              "or try add {} to interpolate=[].".format(feature)

                    logger.error(msg)

                    # raise ValueError("{}: The number of points varies between evaluations.".format(feature)
                    #                  + " Try setting interpolate".format(feature))


                else:
                    # Store data from results in a Data object
                    data[feature].time = results[0][feature]["time"]

                    data[feature].evaluations = []
                    for result in results:
                        data[feature].evaluations.append(result[feature]["values"])

        return data





[docs]    def evaluate_nodes(self, nodes, uncertain_parameters):
        """
        Evaluate the the model and calculate the features
        for the nodes (values) for the uncertain parameters.

        Parameters
        ----------
        nodes : array
            The values for the uncertain parameters
            to evaluate the model and features for.
        uncertain_parameters : list
            A list of the names of all uncertain parameters.

        Returns
        -------
        results : list
            A list where each element is a result dictionary for each set
            of model evaluations.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        Raises
        ------
        ImportError
            If xvfbwrapper is not installed.
        """
        if self.model.suppress_graphics:
            if not prerequisites:
                raise ImportError("Running with suppress_graphics require: xvfbwrapper")

            vdisplay = Xvfb()
            vdisplay.start()

        results = []

        model_parameters = self.create_model_parameters(nodes, uncertain_parameters)

        if self.CPUs:
            import multiprocess as mp

            pool = mp.Pool(processes=self.CPUs)

            # pool.map(self._parallel.run, model_parameters)
            # chunksize = int(np.ceil(len(model_parameters)/self.CPUs))
            chunksize = 1
            for result in tqdm(pool.imap(self._parallel.run, model_parameters, chunksize),
                               desc="Running model",
                               total=len(nodes.T)):

                results.append(result)

            pool.close()

        else:
            for result in tqdm(imap(self._parallel.run, model_parameters),
                               desc="Running model",
                               total=len(nodes.T)):

                results.append(result)



        if self.model.suppress_graphics:
            vdisplay.stop()

        return results




[docs]    def create_model_parameters(self, nodes, uncertain_parameters):
        """
        Combine nodes (values) with the uncertain parameter names to create a
        list of dictionaries corresponding to the model values for each
        model evaluation.

        Parameters
        ----------
        nodes : array
            A series of different set of parameters. The model and each feature is
            evaluated for each set of parameters in the series.
        uncertain_parameters : list
            A list of names of the uncertain parameters.

        Returns
        -------
        model_parameters : list
            A list where each element is a dictionary with the model parameters
            for a single evaluation.
            An example:

            .. code-block:: Python

                model_parameter = {"parameter 1": value 1, "parameter 2": value 2, ...}
                model_parameters = [model_parameter 1, model_parameter 2, ...]

        """

        model_parameters = []
        for node in nodes.T:
            if node.ndim == 0:
                node = [node]

            # New set parameters
            parameters = {}
            for j, parameter in enumerate(uncertain_parameters):
                parameters[parameter] = node[j]

            for parameter in self.parameters:
                if parameter.name not in parameters:
                    parameters[parameter.name] = parameter.value

            model_parameters.append(parameters)

        return model_parameters



[docs]    def is_regular(self, results, feature):
        """
        Test if `feature` in `results` is regular or not, meaning it has a
        varying number of values for each evaluation. Ignores results that
        contains numpy.nan.

        Parameters
        ----------
        results : list
            A list where each element is a result dictionary for each set
            of model evaluations.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        feature: str
            Name of a feature or the model.

        Returns
        -------
        bool
            True if the feature is regular or False if the feature is irregular.
        """
        i = 0
        for result in results:
            i += 1
            if not contains_nan(result[feature]["values"]):
                values_prev = result[feature]["values"]

                # If object array it is not regular
                if isinstance(values_prev, np.ndarray):
                    tmp_array = values_prev
                else:
                    tmp_array = np.array(values_prev)

                if tmp_array.dtype is np.dtype("object"):
                    return False

                break

        for result in results[i:]:
            values = result[feature]["values"]

            # If object array it is not regular
            if isinstance(values, np.ndarray):
                tmp_array = values
            else:
                tmp_array = np.array(values)

            if tmp_array.dtype is np.dtype("object"):
                return False


            if not contains_nan(values):
                try:
                    if np.shape(values_prev) != np.shape(values):
                        return False

                except ValueError:
                    if lengths(values_prev) != lengths(values):
                        return False

                values_prev = values

        return True



[docs]    def run(self, nodes, uncertain_parameters):
        """
        Evaluate the the model and calculate the features
        for the nodes (values) for the uncertain parameters.
        The results are interpolated as necessary.

        Parameters
        ----------
        nodes : array
            A series of different set of parameters. The model and each feature is
            evaluated for each set of parameters in the series.
        uncertain_parameters : list
            A list of names of the uncertain parameters.

        Returns
        -------
        data : Data object
            A Data object with time and (interpolated) results for
            the model and each feature.

        See Also
        --------
        uncertainpy.Data
        """

        if isinstance(uncertain_parameters, six.string_types):
            uncertain_parameters = [uncertain_parameters]

        results = self.evaluate_nodes(nodes, uncertain_parameters)

        data = self.results_to_data(results)
        data.uncertain_parameters = uncertain_parameters

        return data


    # Currently not needed
[docs]    def regularize_nan_results(self, results):
        """
        Regularize arrays with that only contain numpy.nan values.

        Make each result for each feature have the same the same shape, if they
        only contain numpy.nan values.

        Parameters
        ----------
        results : list
            A list where each element is a result dictionary for each set
            of model evaluations.
            An example:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        Returns
        -------
        results : list
            A list with where the only nan results have been regularized.
            On the form:

            .. code-block:: Python

                result = {self.model.name: {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                            "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature1d": {"values": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature0d": {"values": 1,
                                        "time": np.nan},
                          "feature2d": {"values": array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                                         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
                                        "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])},
                          "feature_adaptive": {"values": array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
                                               "time": array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
                                               "interpolation": scipy interpolation object},
                          "feature_invalid": {"values": np.nan,
                                              "time": np.nan}}

                results = [result 1, result 2, ..., result N]

        """

        warnings.warn(
            "regularize_nan_results is no longer used as nan results no longer are required to be regular.",
            DeprecationWarning
        )

        def regularize(results, data):
            """
            Parameters
            ---------
            data : {"values", "time"}
                Which data to regularize, either time or values
            """
            features = results[0].keys()
            for feature in features:
                # Find shape of the first result that is not only nan values
                shape = np.shape(results[0][feature][data])
                for i in range(len(results)):
                    values = results[i][feature][data]
                    if not np.all(np.isnan(values)):
                        shape = np.shape(values)
                        break

                # Find all results that is only nan, and change their shape if
                # the shape is wrong
                for i in range(len(results)):
                    values = results[i][feature][data]
                    if np.all(np.isnan(values)) and np.shape(values) != shape:
                        results[i][feature][data] = np.full(shape, np.nan, dtype=float)

            return results

        results = regularize(results, "values")
        results = regularize(results, "time")

        return results






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.core.uncertainty_calculations

from __future__ import absolute_import, division, print_function, unicode_literals

import six
import numpy as np
from tqdm import tqdm
import chaospy as cp
import types
from SALib.sample import saltelli
from SALib.analyze.sobol import first_order, total_order

from .run_model import RunModel
from .base import ParameterBase
from ..utils.utility import contains_nan
from ..utils.logger import get_logger


[docs]class UncertaintyCalculations(ParameterBase):
    """
    Perform the calculations for the uncertainty quantification and
    sensitivity analysis.

    This class performs the calculations for the uncertainty quantification and
    sensitivity analysis of the model and features. It implements both
    quasi-Monte Carlo methods and polynomial chaos expansions using either
    point collocation or pseudo-spectral method. Both of the polynomial chaos
    expansion methods have support for the rosenblatt transformation to handle
    dependent variables.

    Parameters
    ----------
    model : {None, Model or Model subclass instance, model function}, optional
        Model to perform uncertainty quantification on. For requirements see
        Model.run.
        Default is None.
    parameters: {dict {name: parameter_object}, dict of {name: value or Chaospy distribution}, ...], list of Parameter instances, list [[name, value or Chaospy distribution], ...], list [[name, value, Chaospy distribution or callable that returns a Chaospy distribution],...],}
        List or dictionary of the parameters that should be created.
        On the form ``parameters =``

            * ``{name_1: parameter_object_1, name: parameter_object_2, ...}``
            * ``{name_1:  value_1 or Chaospy distribution, name_2:  value_2 or Chaospy distribution, ...}``
            * ``[parameter_object_1, parameter_object_2, ...]``,
            * ``[[name_1, value_1 or Chaospy distribution], ...]``.
            * ``[[name_1, value_1, Chaospy distribution or callable that returns a Chaospy distribution], ...]``

    features : {None, Features or Features subclass instance, list of feature functions}, optional
        Features to calculate from the model result.
        If None, no features are calculated.
        If list of feature functions, all will be calculated.
        Default is None.
    create_PCE_custom : callable, optional
        A custom method for calculating the polynomial chaos approximation.
        For the requirements of the function see
        ``UncertaintyCalculations.create_PCE_custom``. Overwrites existing
        ``create_PCE_custom`` method.
        Default is None.
    custom_uncertainty_quantification : callable, optional
        A custom method for calculating uncertainties.
        For the requirements of the function see
        ``UncertaintyCalculations.custom_uncertainty_quantification``.
        Overwrites existing ``custom_uncertainty_quantification`` method.
        Default is None.
    CPUs : {int, None, "max"}, optional
        The number of CPUs to use when calculating the model and features.
        If None, no multiprocessing is used.
        If "max", the maximum number of CPUs on the computer
        (multiprocess.cpu_count()) is used.
        Default is "max".
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed.
        Default logger level is "info".

    Attributes
    ----------
    model : Model or Model subclass
        The model to perform uncertainty quantification on.
    parameters : Parameters
        The uncertain parameters.
    features : Features or Features subclass
        The features of the model to perform uncertainty quantification on.
    runmodel : RunModel
        Runmodel object responsible for evaluating the model and calculating features.

    See Also
    --------
    uncertainpy.features.Features
    uncertainpy.Parameter
    uncertainpy.Parameters
    uncertainpy.models.Model
    uncertainpy.core.RunModel
    uncertainpy.models.Model.run : Requirements for the model run function.
    """
    def __init__(self,
                 model=None,
                 parameters=None,
                 features=None,
                 create_PCE_custom=None,
                 custom_uncertainty_quantification=None,
                 CPUs="max",
                 logger_level="info"):


        self.runmodel = RunModel(model=model,
                                 parameters=parameters,
                                 features=features,
                                 logger_level=logger_level,
                                 CPUs=CPUs)


        if create_PCE_custom is not None:
            self.create_PCE_custom = create_PCE_custom

        if custom_uncertainty_quantification is not None:
            self.custom_uncertainty_quantification = custom_uncertainty_quantification

        super(UncertaintyCalculations, self).__init__(parameters=parameters,
                                                      model=model,
                                                      features=features,
                                                      logger_level=logger_level)


    @ParameterBase.features.setter
    def features(self, new_features):
        ParameterBase.features.fset(self, new_features)

        self.runmodel.features = self.features


    @ParameterBase.model.setter
    def model(self, new_model):
        ParameterBase.model.fset(self, new_model)

        self.runmodel.model = self.model


    @ParameterBase.parameters.setter
    def parameters(self, new_parameters):
        ParameterBase.parameters.fset(self, new_parameters)

        self.runmodel.parameters = self.parameters




[docs]    def convert_uncertain_parameters(self, uncertain_parameters=None):
        """
        Converts uncertain_parameter(s) to a list of uncertain parameter(s), and
        checks if it is a legal set of uncertain parameter(s).

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The name(s) of the uncertain parameters to use. If None, a list of
            all uncertain parameters are returned.
            Default is None.

        Returns
        -------
        uncertain_parameters : list
            A list with the name of all uncertain parameters.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        See Also
        --------
        uncertainpy.Parameters
        """
        if isinstance(uncertain_parameters, six.string_types):
            uncertain_parameters = [uncertain_parameters]

        if self.parameters.distribution is None:
            if uncertain_parameters is None:
                uncertain_parameters = self.parameters.get_from_uncertain("name")

        else:
            if uncertain_parameters is None:
                uncertain_parameters = self.parameters.get("name")
            elif sorted(uncertain_parameters) != sorted(self.parameters.get("name")):
                 raise ValueError("A common multivariate distribution is given, " +
                                  "and all uncertain parameters must be used. " +
                                  "Set uncertain_parameters to None or a list of all " +
                                  "uncertain parameters.")

        return uncertain_parameters



[docs]    def create_distribution(self, uncertain_parameters=None):
        """
        Create a joint multivariate distribution for the selected parameters from
        univariate distributions.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the joint multivariate
            distribution. If None, the joint multivariate distribution for all
            uncertain parameters is created.
            Default is None.

        Returns
        -------
        distribution : chaospy.Dist
            The joint multivariate distribution for the given parameters.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        If a multivariate distribution is defined in the Parameters.distribution,
        that multivariate distribution is returned. Otherwise the joint
        multivariate distribution for the selected parameters is created from
        the univariate distributions.

        See also
        --------
        uncertainpy.Parameters
        """
        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        if self.parameters.distribution is None:
            parameter_distributions = self.parameters.get("distribution", uncertain_parameters)

            distribution = cp.J(*parameter_distributions)
        else:
            distribution = self.parameters.distribution

        return distribution



[docs]    def dependent(self, distribution):
        """
        Check if a distribution is dependent or not.

        Parameters
        ----------
        distribution : chaospy.Dist
            A Chaospy probability distribution.

        Returns
        -------
        dependent : bool
            True if the distribution is dependent, False if is independent.
        """
        # New property added in Chaospy, so the dependent method is
        # kept for legacy
        return distribution.stochastic_dependent



[docs]    def create_mask(self, evaluations):
        """
        Mask evaluations that do not give results (anything but np.nan or None).

        Parameters
        ----------
        evaluations : array_like
            Evaluations for the model.

        Returns
        -------
        masked_evaluations : list
            The evaluations that have results (not numpy.nan or None).
        mask : boolean array
            The mask itself, used to create the masked arrays.
        """
        masked_evaluations = []
        mask = np.ones(len(evaluations), dtype=bool)

        for i, result in enumerate(evaluations):
            # if np.any(np.isnan(result)):
            if contains_nan(result):
                mask[i] = False
            else:
                masked_evaluations.append(result)

        return masked_evaluations, mask



[docs]    def create_masked_evaluations(self, data, feature):
        """
        Mask all model and feature evaluations that do not give results
        (anything but np.nan) and the corresponding nodes.

        Parameters
        ----------
        data : Data
            A Data object with evaluations for the model and each feature.
            Must contain `data[feature].evaluations`.
        feature : str
            Name of the feature or model to mask.

        Returns
        -------
        masked_evaluations : list
            The evaluations that have results (not numpy.nan or None).
        mask : boolean array
            The mask itself, used to create the masked arrays.
        """
        if feature not in data:
            raise AttributeError("Error: {} is not a feature".format(feature))

        masked_evaluations, mask = self.create_mask(data[feature].evaluations)

        if not np.all(mask):
            logger = get_logger(self)
            logger.warning("{}: only yields ".format(feature) +
                           "results for {}/{} ".format(sum(mask), len(mask)) +
                           "parameter combinations.")


        return masked_evaluations, mask




[docs]    def create_masked_nodes(self, data, feature, nodes):
        """
        Mask all model and feature evaluations that do not give results
        (anything but np.nan) and the corresponding nodes.

        Parameters
        ----------
        data : Data
            A Data object with evaluations for the model and each feature.
            Must contain `data[feature].evaluations`.
        feature : str
            Name of the feature or model to mask.
        nodes : array_like
            The nodes used to evaluate the model.

        Returns
        -------
        masked_evaluations : array_like
            The evaluations which have results.
        mask : boolean array
            The mask itself, used to create the masked arrays.
        masked_nodes : array_like
            The nodes that correspond to the evaluations with results.
        """
        masked_evaluations, mask = self.create_masked_evaluations(data, feature)

        if len(nodes.shape) > 1:
            masked_nodes = nodes[:, mask]
        else:
            masked_nodes = nodes[mask]

        return masked_evaluations, mask, masked_nodes




[docs]    def create_masked_nodes_weights(self, data, feature, nodes, weights):
        """
        Mask all model and feature evaluations that do not give results
        (anything but numpy.nan) and the corresponding nodes.

        Parameters
        ----------
        data : Data
            A Data object with evaluations for the model and each feature.
            Must contain `data[feature].evaluations`.
        nodes : array_like
            The nodes used to evaluate the model.
        feature : str
            Name of the feature or model to mask.
        weights : array_like
            Weights corresponding to each node.

        Returns
        -------
        masked_evaluations : array_like
            The evaluations which have results.
        mask : boolean array
            The mask itself, used to create the masked arrays.
        masked_nodes : array_like
            The nodes that correspond to the evaluations with results.
        masked_weights : array_like
            Masked weights that correspond to evaluations with results.
        """
        masked_evaluations, mask, masked_nodes = self.create_masked_nodes(data, feature, nodes)

        if len(weights.shape) > 1:
            masked_weights = weights[:, mask]
        else:
            masked_weights = weights[mask]

        return masked_evaluations, mask, masked_nodes, masked_weights






[docs]    def create_PCE_spectral(self,
                            uncertain_parameters=None,
                            polynomial_order=4,
                            quadrature_order=None,
                            allow_incomplete=True):
        """
        Create the polynomial approximation `U_hat` using pseudo-spectral
        projection.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method. If None,
            ``quadrature_order = polynomial_order + 2``.
            Default is None.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.

        Returns
        -------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        The returned `data` should contain (but not necessarily) the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``

        The model and feature do not necessarily give results for each
        node. The pseudo-spectral methods is sensitive to missing values, so
        `allow_incomplete` should be used with care.

        The polynomial chaos expansion method for uncertainty quantification
        approximates the model with a polynomial that follows specific
        requirements. This polynomial can be used to quickly calculate the
        uncertainty and sensitivity of the model.

        To create the polynomial chaos expansion we first find the polynomials
        using the three-therm recurrence relation if available,
        otherwise the discretized Stieltjes method is used. Then we use the
        pseudo-spectral projection to find the expansion coefficients for the
        model and each feature of the model.

        Pseudo-spectral projection is based on least squares minimization and
        finds the expansion coefficients through numerical integration. The
        integration uses a quadrature scheme with weights and nodes. We use Leja
        quadrature with Smolyak sparse grids to reduce the number of nodes
        required. For each of the nodes we evaluate the model and calculate the
        features, and the polynomial approximation is created from these results.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """
        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)

        P = cp.orth_ttr(polynomial_order, distribution)

        if quadrature_order is None:
            quadrature_order = polynomial_order + 2


        nodes, weights = cp.generate_quadrature(quadrature_order,
                                                distribution,
                                                rule="J",
                                                sparse=True)

        # Running the model
        data = self.runmodel.run(nodes, uncertain_parameters)


        data.method = "polynomial chaos expansion with the pseudo-spectral method. polynomial_order={}, quadrature_order={}".format(polynomial_order, quadrature_order)

        logger = get_logger(self)

        U_hat = {}
        # Calculate PC for each feature
        for feature in tqdm(data,
                            desc="Calculating PC for each feature",
                            total=len(data)):
            if feature == self.model.name and self.model.ignore:
                continue

            masked_evaluations, mask, masked_nodes, masked_weights = \
                self.create_masked_nodes_weights(data, feature, nodes, weights)


            if (np.all(mask) or allow_incomplete) and sum(mask) > 0:
                U_hat[feature] = cp.fit_quadrature(P, masked_nodes,
                                                   masked_weights, masked_evaluations)
            elif not allow_incomplete:
                logger.warning("{}: not all parameter combinations give results.".format(feature) +
                               " No uncertainty quantification is performed since allow_incomplete=False")

            else:
                logger.warning("{}: not all parameter combinations give results.".format(feature))

            if not np.all(mask):
                data.incomplete.append(feature)

        return U_hat, distribution, data



[docs]    def create_PCE_collocation(self,
                               uncertain_parameters=None,
                               polynomial_order=4,
                               nr_collocation_nodes=None,
                               allow_incomplete=True):
        """
        Create the polynomial approximation `U_hat` using pseudo-spectral
        projection.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose. If None,
            `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.

        Returns
        -------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        The returned `data` should contain (but not necessarily) the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``

        The model and feature do not necessarily give results for each
        node. The collocation method is robust towards missing values as long as
        the number of results that remain is high enough.

        The polynomial chaos expansion method for uncertainty quantification
        approximates the model with a polynomial that follows specific
        requirements. This polynomial can be used to quickly calculate the
        uncertainty and sensitivity of the model.

        To create the polynomial chaos expansion we first find the polynomials
        using the three-therm recurrence relation if available, otherwise the
        discretized Stieltjes method is used. Then we use point collocation
        to find the expansion coefficients for the model and each feature of the
        model.

        In point collocation we require the polynomial approximation to be equal
        the model at a set of collocation nodes. This results in a set of linear
        equations for the polynomial coefficients we can solve. We choose
        `nr_collocation_nodes` collocation nodes with Hammersley sampling from
        the `distribution`. We evaluate the model and each feature in parallel,
        and solve the resulting set of linear equations with Tikhonov
        regularization.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """

        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)

        P = cp.orth_ttr(polynomial_order, distribution)
        if nr_collocation_nodes is None:
            nr_collocation_nodes = 2*len(P) + 2

        nodes = distribution.sample(nr_collocation_nodes, "M")


        # Running the model
        data = self.runmodel.run(nodes, uncertain_parameters)

        data.method = "polynomial chaos expansion with point collocation. polynomial_order={}, nr_collocation_nodes={}".format(polynomial_order, nr_collocation_nodes)

        logger = get_logger(self)

        U_hat = {}
        # Calculate PC for each feature
        for feature in tqdm(data,
                            desc="Calculating PC for each feature",
                            total=len(data)):
            if feature == self.model.name and self.model.ignore:
                continue

            masked_evaluations, mask, masked_nodes = self.create_masked_nodes(data, feature, nodes)

            if (np.all(mask) or allow_incomplete) and sum(mask) > 0:
                U_hat[feature] = cp.fit_regression(P, masked_nodes,
                                                   masked_evaluations)
            elif not allow_incomplete:
                logger.warning("{}: not all parameter combinations give results.".format(feature) +
                               " No uncertainty quantification is performed since allow_incomplete=False")

            else:
                logger.warning("{}: not all parameter combinations give results.".format(feature))


            if not np.all(mask):
                data.incomplete.append(feature)

        return U_hat, distribution, data



[docs]    def create_PCE_spectral_rosenblatt(self,
                                       uncertain_parameters=None,
                                       polynomial_order=4,
                                       quadrature_order=None,
                                       allow_incomplete=True):
        """
        Create the polynomial approximation `U_hat` using pseudo-spectral
        projection and the Rosenblatt transformation. Works for dependend
        uncertain parameters.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method. If None,
            ``quadrature_order = polynomial_order + 2``.
            Default is None.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.

        Returns
        -------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        `data` should contain (but not necessarily) the following, if
           applicable:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``

        The model and feature do not necessarily give results for each
        node. The pseudo-spectral methods is sensitive to missing values, so
        `allow_incomplete` should be used with care.

        The polynomial chaos expansion method for uncertainty quantification
        approximates the model with a polynomial that follows specific
        requirements. This polynomial can be used to quickly calculate the
        uncertainty and sensitivity of the model.

        We use the Rosenblatt transformation to transform from dependent to
        independent variables before we create the polynomial chaos expansion.
        We first find the polynomials from the independent distributions
        using the three-therm recurrence relation if available, otherwise the
        discretized Stieltjes method is used. Then we use the pseudo-spectral
        projection with the Rosenblatt transformation to find the expansion
        coefficients for the model and each feature of the model.

        Pseudo-spectral projection is based on least squares
        minimization and finds the expansion coefficients through numerical
        integration. The integration uses a quadrature scheme with weights
        and nodes. We use Leja quadrature with Smolyak sparse grids to reduce the
        number of nodes required.
        We use the Rosenblatt transformation to transform the quadrature nodes
        before they are sent to the model evaluation.
        For each of the nodes we evaluate the model and calculate the features,
        and the polynomial approximation is created from these results.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """

        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)


        # Create the Multivariate normal distribution
        dist_R = []
        for parameter in uncertain_parameters:
            dist_R.append(cp.Normal())

        dist_R = cp.J(*dist_R)

        P = cp.orth_ttr(polynomial_order, dist_R)

        if quadrature_order is None:
            quadrature_order = polynomial_order + 2

        nodes_R, weights_R = cp.generate_quadrature(quadrature_order,
                                                    dist_R,
                                                    rule="J",
                                                    sparse=True)


        nodes = distribution.inv(dist_R.fwd(nodes_R))
        # weights = weights_R*distribution.pdf(nodes)/dist_R.pdf(nodes_R)

        # Running the model
        data = self.runmodel.run(nodes, uncertain_parameters)

        data.method = "polynomial chaos expansion with the pseudo-spectral method and the Rosenblatt transformation. polynomial_order={}, quadrature_order={}".format(polynomial_order, quadrature_order)

        logger = get_logger(self)

        U_hat = {}
        # Calculate PC for each feature
        for feature in tqdm(data,
                            desc="Calculating PC for each feature",
                            total=len(data)):

            if feature == self.model.name and self.model.ignore:
                continue

            # The tutorial version
            # masked_nodes, masked_values, mask, masked_weights = self.create_mask(data,
            #                                                           nodes_R,
            #                                                           feature,
            #                                                           weights)

            # The version thats seems to be working
            masked_evaluations, mask, masked_nodes, masked_weights = \
                self.create_masked_nodes_weights(data,
                                                 feature,
                                                 nodes_R,
                                                 weights_R)

            if (np.all(mask) or allow_incomplete) and sum(mask) > 0:
                U_hat[feature] = cp.fit_quadrature(P,
                                                   masked_nodes,
                                                   masked_weights,
                                                   masked_evaluations)
            elif not allow_incomplete:
                logger.warning("{}: not all parameter combinations give results.".format(feature) +
                               " No uncertainty quantification is performed since allow_incomplete=False")

            else:
                logger.warning("{}: not all parameter combinations give results.".format(feature))


            if not np.all(mask):
                data.incomplete.append(feature)

        return U_hat, dist_R, data



[docs]    def create_PCE_collocation_rosenblatt(self,
                                          uncertain_parameters=None,
                                          polynomial_order=4,
                                          nr_collocation_nodes=None,
                                          allow_incomplete=True):
        """
        Create the polynomial approximation `U_hat` using pseudo-spectral
        projection and the Rosenblatt transformation. Works for dependend
        uncertain parameters.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose. If None,
            `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.

        Returns
        -------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        The returned `data` should contain (but not necessarily) the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``

        The model and feature do not necessarily give results for each node. The
        collocation method is robust towards missing values as long as the number
        of results that remain is high enough.

        The polynomial chaos expansion method for uncertainty quantification
        approximates the model with a polynomial that follows specific
        requirements. This polynomial can be used to quickly calculate the
        uncertainty and sensitivity of the model.

        We use the Rosenblatt transformation to transform from dependent to
        independent variables before we create the polynomial chaos expansion.
        We first find the polynomials from the independent distributions using
        the three-therm recurrence relation if available, otherwise the
        discretized Stieltjes method is used. Then we use the point collocation
        with the Rosenblatt transformation to find the expansion coefficients
        for the model and each feature of the model.

        In point collocation we require the polynomial approximation to be equal
        the model at a set of collocation nodes. This results in a set of linear
        equations for the polynomial coefficients we can solve. We choose
        `nr_collocation_nodes` collocation nodes with Hammersley sampling from
        the independent distribution. We then transform the nodes using the
        Rosenblatte transformation and evaluate the model and each
        feature in parallel. We solve the resulting set of linear equations
        with Tikhonov regularization.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """
        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)


        # Create the Multivariate normal distribution
        # dist_R = cp.Iid(cp.Normal(), len(uncertain_parameters))
        dist_R = []
        for parameter in uncertain_parameters:
            dist_R.append(cp.Normal())

        dist_R = cp.J(*dist_R)

        P = cp.orth_ttr(polynomial_order, dist_R)

        if nr_collocation_nodes is None:
            nr_collocation_nodes = 2*len(P) + 2

        nodes_R = dist_R.sample(nr_collocation_nodes, "M")
        nodes = distribution.inv(dist_R.fwd(nodes_R))

        # Running the model
        data = self.runmodel.run(nodes, uncertain_parameters)

        data.method = "polynomial chaos expansion with point collocation and the Rosenblatt transformation. polynomial_order={}, nr_collocation_nodes={}".format(polynomial_order, nr_collocation_nodes)

        logger = get_logger(self)

        U_hat = {}
        # Calculate PC for each feature
        for feature in tqdm(data,
                            desc="Calculating PC for each feature",
                            total=len(data)):
            if feature == self.model.name and self.model.ignore:
                continue

            masked_evaluations, mask, masked_nodes = self.create_masked_nodes(data, feature, nodes_R)

            if (np.all(mask) or allow_incomplete) and sum(mask) > 0:
                U_hat[feature] = cp.fit_regression(P,
                                                   masked_nodes,
                                                   masked_evaluations)
            elif not allow_incomplete:
                logger.warning("{}: not all parameter combinations give results.".format(feature) +
                               " No uncertainty quantification is performed since allow_incomplete=False")

            else:
                logger.warning("{}: not all parameter combinations give results.".format(feature))

            if not np.all(mask):
                data.incomplete.append(feature)

        return U_hat, dist_R, data



[docs]    def analyse_PCE(self, U_hat, distribution, data, nr_samples=10**4):
        """
        Calculate the statistical metrics from the polynomial chaos
        approximation.

        Parameters
        ----------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.
        nr_samples : int, optional
            Number of samples for the Monte Carlo sampling of the polynomial
            chaos approximation.
            Default is 10**4.

        Returns
        -------
        data : Data
            The `data` parameter given as input with the statistical metrics added.

        Notes
        -----
        The `data` parameter should contain (but not necessarily) the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``

        When returned `data` additionally contains:

            8. ``data["model/features"].mean``
            9. ``data["model/features"].variance``
            10. ``data["model/features"].percentile_5``
            11. ``data["model/features"].percentile_95``
            12. ``data["model/features"].sobol_first``, if more than 1 parameter
            13. ``data["model/features"].sobol_total``, if more than 1 parameter
            14. ``data["model/features"].sobol_first_average``, if more than 1 parameter
            15. ``data["model/features"].sobol_total_average``, if more than 1 parameter

        See also
        --------
        uncertainpy.Data
        """

        if len(data.uncertain_parameters) == 1:
            logger = get_logger(self)
            logger.info("Only 1 uncertain parameter. Sensitivities are not calculated")

        U_mc = {}
        for feature in tqdm(data,
                            desc="Calculating statistics from PCE",
                            total=len(data)):
            if feature in U_hat:
                data[feature].mean = cp.E(U_hat[feature], distribution)
                data[feature].variance = cp.Var(U_hat[feature], distribution)

                samples = distribution.sample(nr_samples, "M")

                if len(data.uncertain_parameters) > 1:
                    U_mc[feature] = U_hat[feature](*samples)

                    data[feature].sobol_first = cp.Sens_m(U_hat[feature], distribution)
                    data[feature].sobol_total = cp.Sens_t(U_hat[feature], distribution)
                    data = self.average_sensitivity(data, sensitivity="sobol_first")
                    data = self.average_sensitivity(data, sensitivity="sobol_total")

                else:
                    U_mc[feature] = U_hat[feature](samples)

                data[feature].percentile_5 = np.percentile(U_mc[feature], 5, -1)
                data[feature].percentile_95 = np.percentile(U_mc[feature], 95, -1)

        return data




    @property
    def create_PCE_custom(self, uncertain_parameters=None, **kwargs):
        """
        A custom method for calculating the polynomial chaos approximation.
        Must follow the below requirements.

        Parameters
        ----------
        self : UncertaintyCalculation
            An explicit self is required as the first argument.
            self can be used inside the custom function.
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        **kwargs
            Any number of optional arguments.

        Returns
        -------
        U_hat : dict
            A dictionary containing the polynomial approximations for the
            model and each feature as chaospy.Poly objects.
        distribution : chaospy.Dist
            The multivariate distribution for the uncertain parameters.
        data : Data
            A data object containing the values from the model evaluation
            and feature calculations.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        This method can be implemented to create a custom method to calculate
        the polynomial chaos expansion. The method must calculate and return
        the return arguments described above.

        The returned `data` should contain (but not necessarily) the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``

        The method `analyse_PCE` is called after the polynomial approximation
        has been created.

        Usefull methods in Uncertainpy are:

        1. uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters
        2. uncertainpy.core.Uncertaintycalculations.create_distribution
        3. uncertainpy.core.RunModel.run

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters : Converts uncertain parameters to allowed list
        uncertainpy.core.Uncertaintycalculations.create_distribution : Creates the uncertain parameter distribution
        uncertainpy.core.RunModel.run : Runs the model
        """
        return self._create_PCE_custom

    @create_PCE_custom.setter
    def create_PCE_custom(self, new_create_PCE_custom):
        if not callable(new_create_PCE_custom):
            raise TypeError("create_PCE_custom function must be callable")

        self._create_PCE_custom = types.MethodType(new_create_PCE_custom, self)
        # self._create_PCE_custom = new_create_PCE_custom


    def _create_PCE_custom(self, uncertain_parameters=None, **kwargs):
        raise NotImplementedError("No custom Polynomial Chaos expansion method implemented")


    @property
    def custom_uncertainty_quantification(self, **kwargs):
        """
        A custom uncertainty quantification method. Must follow the below
        requirements.

        Parameters
        ----------
        self : UncertaintyCalculation
            An explicit self is required as the first argument.
            self can be used inside the custom function.
        **kwargs
            Any number of optional arguments.

        Returns
        -------
        data : Data
            A Data object with calculated uncertainties.

        Notes
        -----
        Usefull methods in Uncertainpy are:

        1. uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters
           - Converts uncertain parameters to an allowed list.
        2. uncertainpy.core.Uncertaintycalculations.create_distribution
           - Creates the uncertain parameter distribution
        3. uncertainpy.core.RunModel.run - Runs the model and all features.

        See also
        --------
        uncertainpy.Data
        uncertainpy.core.Uncertaintycalculations.convert_uncertain_parameters : Converts uncertain parameters to list
        uncertainpy.core.Uncertaintycalculations.create_distribution : Create uncertain parameter distribution
        uncertainpy.core.RunModel.run : Runs the model
        """

        return self._custom_uncertainty_quantification

    @custom_uncertainty_quantification.setter
    def custom_uncertainty_quantification(self, new_custom_uncertainty_quantification):
        if not callable(new_custom_uncertainty_quantification):
            raise TypeError("custom_uncertainty_quantification function must be callable")

        self._custom_uncertainty_quantification = types.MethodType(new_custom_uncertainty_quantification, self)
        # self._custom_uncertainty_quantification = new_custom_uncertainty_quantification

    def _custom_uncertainty_quantification(self, **kwargs):
        raise NotImplementedError("No custom uncertainty calculation method implemented")


[docs]    def polynomial_chaos(self,
                         method="collocation",
                         rosenblatt="auto",
                         uncertain_parameters=None,
                         polynomial_order=4,
                         nr_collocation_nodes=None,
                         quadrature_order=None,
                         nr_pc_mc_samples=10**4,
                         allow_incomplete=True,
                         seed=None,
                         **custom_kwargs):
        """
        Perform an uncertainty quantification and sensitivity analysis
        using polynomial chaos expansions.

        Parameters
        ----------
        method : {"collocation", "spectral", "custom"}, optional
            The method to use when creating the polynomial chaos approximation.
            "collocation" is the point collocation method "spectral" is
            pseudo-spectral projection, and "custom" is the custom polynomial
            method.
            Default is "collocation".
        rosenblatt : {"auto", bool}, optional
            If the Rosenblatt transformation should be used. The Rosenblatt
            transformation must be used if the uncertain parameters have
            dependent variables. If "auto" the Rosenblatt transformation is used
            if there are dependent parameters, and it is not used of the
            parameters have independent distributions. Default is "auto".
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        polynomial_order : int, optional
            The polynomial order of the polynomial approximation.
            Default is 4.
        nr_collocation_nodes : {int, None}, optional
            The number of collocation nodes to choose, if point collocation is
            used. If None, `nr_collocation_nodes` = 2* number of expansion factors + 2.
            Default is None.
        quadrature_order : {int, None}, optional
            The order of the Leja quadrature method, if pseudo-spectral
            projection is used. If None, ``quadrature_order = polynomial_order + 2``.
            Default is None.
        nr_pc_mc_samples : int, optional
            Number of samples for the Monte Carlo sampling of the polynomial
            chaos approximation.
        allow_incomplete : bool, optional
            If the polynomial approximation should be performed for features or
            models with incomplete evaluations.
            Default is True.
        seed : int, optional
            Set a random seed. If None, no seed is set. Default is None.

        Returns
        -------
        data : Data
            A data object with all model and feature values, as well as all
            calculated statistical metrics.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.
        ValueError
            If `method` not one of "collocation", "spectral" or "custom".
        NotImplementedError
            If "custom" is chosen and have not been implemented.

        Notes
        -----
        The returned `data` should contain the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``
            8. ``data["model/features"].mean``
            9. ``data["model/features"].variance``
            10. ``data["model/features"].percentile_5``
            11. ``data["model/features"].percentile_95``
            12. ``data["model/features"].sobol_first``, if more than 1 parameter
            13. ``data["model/features"].sobol_total``, if more than 1 parameter
            14. ``data["model/features"].sobol_first_average``, if more than 1 parameter
            15. ``data["model/features"].sobol_total_average``, if more than 1 parameter

        The model and feature do not necessarily give results for each
        node. The collocation method is robust towards missing values as long as
        the number of results that remain is high enough. The pseudo-spectral
        method on the other hand, is sensitive to missing values, so
        `allow_incomplete` should be used with care in that case.

        The polynomial chaos expansion method for uncertainty quantification
        approximates the model with a polynomial that follows specific
        requirements. This polynomial can be used to quickly calculate the
        uncertainty and sensitivity of the model.

        To create the polynomial chaos expansion we first find the polynomials
        using the three-therm recurrence relation if available,
        otherwise the discretized Stieltjes method is used. Then we use point collocation
        or pseudo-spectral projection to find the expansion coefficients for the
        model and each feature of the model.

        In point collocation we require the polynomial approximation to be equal
        the model at a set of collocation nodes. This results in a set of linear
        equations for the polynomial coefficients we can solve. We choose
        `nr_collocation_nodes` collocation nodes with Hammersley sampling from
        the `distribution`. We evaluate the model and each feature in parallel,
        and solve the resulting set of linear equations with Tikhonov
        regularization.

        Pseudo-spectral projection is based on least squares minimization and
        finds the expansion coefficients through numerical integration. The
        integration uses a quadrature scheme with weights and nodes. We use Leja
        quadrature with Smolyak sparse grids to reduce the number of nodes
        required. For each of the nodes we evaluate the model and calculate the
        features, and the polynomial approximation is created from these results.

        If we have dependent uncertain parameters we must use the Rosenblatt
        transformation. We use the Rosenblatt transformation to transform from
        dependent to independent variables before we create the polynomial chaos
        expansion. We first find the polynomials from the independent
        distributions using the three-term recurrence relation if available,
        otherwise the discretized Stieltjes method is used

        Both pseudo-spectral projection and point collocation is performed using
        the independent distribution, the only difference is that we use the
        Rosenblatt transformation to transform the nodes from the independent
        distribution to the dependent distribution.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """
        if seed is not None:
            np.random.seed(seed)

        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)
        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)

        if rosenblatt == "auto":
            if self.dependent(distribution):
                rosenblatt = True
            else:
                rosenblatt = False

        elif rosenblatt == False:
            if self.dependent(distribution):
                raise ValueError('Dependent parameters require using the Rosenblatt transformation. Set rosenblatt="auto" or rosenblatt=True')

        if method == "collocation":
            if rosenblatt:
                U_hat, distribution, data = \
                    self.create_PCE_collocation_rosenblatt(uncertain_parameters=uncertain_parameters,
                                                           polynomial_order=polynomial_order,
                                                           nr_collocation_nodes=nr_collocation_nodes,
                                                           allow_incomplete=allow_incomplete)
            else:
                U_hat, distribution, data = \
                    self.create_PCE_collocation(uncertain_parameters=uncertain_parameters,
                                                polynomial_order=polynomial_order,
                                                nr_collocation_nodes=nr_collocation_nodes,
                                                allow_incomplete=allow_incomplete)

        elif method == "spectral":
            if rosenblatt:
                U_hat, distribution, data = \
                    self.create_PCE_spectral_rosenblatt(uncertain_parameters=uncertain_parameters,
                                                        polynomial_order=polynomial_order,
                                                        quadrature_order=quadrature_order,
                                                        allow_incomplete=allow_incomplete)
            else:
                U_hat, distribution, data = \
                    self.create_PCE_spectral(uncertain_parameters=uncertain_parameters,
                                             polynomial_order=polynomial_order,
                                             quadrature_order=quadrature_order,
                                             allow_incomplete=allow_incomplete)

        elif method == "custom":
            U_hat, distribution, data = \
                self.create_PCE_custom(uncertain_parameters, **custom_kwargs)

        # TODO add support for more methods here by using
        # try:
        #     getattr(self, method)
        # except AttributeError:
        #     raise NotImplementedError("{} not implemented".format{method})

        else:
            raise ValueError("No polynomial chaos method with name {}".format(method))

        data = self.analyse_PCE(U_hat, distribution, data, nr_samples=nr_pc_mc_samples)

        data.seed = seed

        return data



[docs]    def monte_carlo(self,
                    uncertain_parameters=None,
                    nr_samples=10**4,
                    seed=None,
                    allow_incomplete=True):
        """
        Perform an uncertainty quantification using the quasi-Monte Carlo method.

        Parameters
        ----------
        uncertain_parameters : {None, str, list}, optional
            The uncertain parameter(s) to use when creating the polynomial
            approximation. If None, all uncertain parameters are used.
            Default is None.
        nr_samples : int, optional
            Number of samples for the quasi-Monte Carlo sampling.
            Default is 10**4.
        seed : int, optional
            Set a random seed. If None, no seed is set.
            Default is None.
        allow_incomplete : bool, optional
            If the uncertainty quantification should be performed for features
            or models with incomplete evaluations.
            Default is True.

        Returns
        -------
        data : Data
            A data object with all model and feature evaluations, as well as all
            calculated statistical metrics.

        Raises
        ------
        ValueError
            If a common multivariate distribution is given in
            Parameters.distribution and not all uncertain parameters are used.

        Notes
        -----
        The returned `data` should contain the following:

            1. ``data["model/features"].evaluations``
            2. ``data["model/features"].time``
            3. ``data["model/features"].labels``
            4. ``data.model_name``
            5. ``data.incomplete``
            6. ``data.method``
            7. ``data.errored``
            8. ``data["model/features"].mean``
            9. ``data["model/features"].variance``
            10. ``data["model/features"].percentile_5``
            11. ``data["model/features"].percentile_95``
            12. ``data["model/features"].sobol_first``, if more than 1 parameter
            13. ``data["model/features"].sobol_total``, if more than 1 parameter
            14. ``data["model/features"].sobol_first_average``, if more than 1 parameter
            15. ``data["model/features"].sobol_total_average``, if more than 1 parameter


        In the quasi-Monte Carlo method we quasi-randomly draw
        ``(nr_samples/2)*(nr_uncertain_parameters + 2)`` (nr_samples=10**4 by default)
        parameter samples using Saltelli's sampling scheme ([1]_). We require
        this number of samples to be able to calculate the Sobol indices. We
        evaluate the model for each of these parameter samples and calculate the
        features from each of the model results. This step is performed in
        parallel to speed up the calculations. Then we use nr_samples` of
        the model and feature results to calculate the mean, variance, and 5th
        and 95th percentile for the model and each feature. Lastly, we use all
        calculated model and each feature results to calculate the Sobol indices
        using Saltellie's approach.

        References
        ----------
        .. [1] Saltelli, A., P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and
            S. Tarantola (2010).  "Variance based sensitivity analysis of model
            output.  Design and estimator for the total sensitivity index."
            Computer Physics Communications, 181(2):259-270,
            doi:10.1016/j.cpc.2009.09.018.

        See also
        --------
        uncertainpy.Data
        uncertainpy.Parameters
        """

        if seed is not None:
            np.random.seed(seed)

        uncertain_parameters = self.convert_uncertain_parameters(uncertain_parameters)

        distribution = self.create_distribution(uncertain_parameters=uncertain_parameters)

        # nodes = distribution.sample(nr_samples, "M")

        problem = {
            "num_vars": len(uncertain_parameters),
            "names": uncertain_parameters,
            "bounds": [[0,1]]*len(uncertain_parameters)
        }

        # Create the Multivariate normal distribution
        dist_R = []
        for parameter in uncertain_parameters:
            dist_R.append(cp.Uniform())

        dist_R = cp.J(*dist_R)

        nr_sobol_samples = int(np.round(nr_samples/2.))

        nodes_R = saltelli.sample(problem, nr_sobol_samples, calc_second_order=False)

        nodes = distribution.inv(dist_R.fwd(nodes_R.transpose()))


        data = self.runmodel.run(nodes, uncertain_parameters)

        data.method = "monte carlo method. nr_samples={}".format(nr_samples)
        data.seed = seed

        logger = get_logger(self)
        for feature in data:
            if feature == self.model.name and self.model.ignore:
                continue

            # Only use A to calculate the mean and variance
            A, B, AB = self.separate_output_values(data[feature].evaluations,
                                                   len(uncertain_parameters),
                                                   nr_sobol_samples)

            independent_evaluations = np.concatenate([A, B])

            masked_evaluations, mask = self.create_mask(independent_evaluations)

            logger = get_logger(self)

            if (np.all(mask) or allow_incomplete) and sum(mask) > 0:
                data[feature].mean = np.mean(masked_evaluations, 0)
                data[feature].variance = np.var(masked_evaluations, 0)

                data[feature].percentile_5 = np.percentile(masked_evaluations, 5, 0)
                data[feature].percentile_95 = np.percentile(masked_evaluations, 95, 0)

                if len(data.uncertain_parameters) > 1:
                    # Results cannot be removed when calculating the sensitivity.
                    # Instead NaN results are set to the mean.
                    # see https://github.com/SALib/SALib/issues/134
                    _, mask = self.create_mask(data[feature].evaluations)
                    masked_mean_evaluations = data[feature].evaluations

                    # masked_mean_evaluations[~mask] = data[feature].mean
                    indices = np.where(mask == 0)[0]

                    for i in indices:
                        masked_mean_evaluations[i] = data[feature].mean

                    if not np.all(mask):
                        logger.warning("{}: only yields ".format(feature) +
                                       "results for {}/{} ".format(sum(mask), len(mask)) +
                                       "parameter combinations." +
                                       "numpy.nan results are set to the mean when calculating the Sobol indices. " +
                                       "This might affect the Sobol indices.")


                    sobol_first, sobol_total = self.mc_calculate_sobol(masked_mean_evaluations,
                                                                       len(uncertain_parameters),
                                                                       nr_sobol_samples)
                    data[feature].sobol_first = sobol_first
                    data[feature].sobol_total = sobol_total
                    data = self.average_sensitivity(data, sensitivity="sobol_first")
                    data = self.average_sensitivity(data, sensitivity="sobol_total")

            elif not allow_incomplete:
                logger.warning("{}: not all parameter combinations give results.".format(feature) +
                               " No uncertainty quantification is performed since allow_incomplete=False")

            else:
                logger.warning("{}: not all parameter combinations give results.".format(feature))

            if not np.all(mask):
                data.incomplete.append(feature)


        return data



[docs]    def separate_output_values(self, evaluations, nr_uncertain_parameters, nr_samples):
        """
        Notes
        -----
        Separate the output from the model evaluations, evaluated for the
        samples created by SALIB.sample.saltelli.

        Parameters
        ----------
        evaluations : array_like
            The model evaluations, evaluated for the samples created by
            SALIB.sample.saltelli.
        nr_uncertain_parameters : int
            Number of uncertain parameters.
        nr_samples : int
            Number of samples used in the Monte Carlo sampling.

        Returns
        ----------
        A : array_like
            The A sample matrix from saltellie et. al. 2010.
        B : array_like
            The B sample matrix from saltellie et. al. 2010.
        AB : array_like
            The AB sample matrix from saltellie et. al. 2010.

        Notes
        -----
        Adapted from SALib/analyze/sobol.py:

        https://github.com/SALib/SALib/blob/master/SALib/analyze/sobol.py
        """

        evaluations = np.array(evaluations)

        shape = (nr_samples, nr_uncertain_parameters) + evaluations[0].shape
        step = nr_uncertain_parameters + 2
        AB = np.zeros(shape)

        A = evaluations[0:evaluations.shape[0]:step]
        B = evaluations[(step - 1):evaluations.shape[0]:step]

        for i in range(nr_uncertain_parameters):
            AB[:, i] = evaluations[(i + 1):evaluations.shape[0]:step]

        return A, B, AB



[docs]    def mc_calculate_sobol(self, evaluations, nr_uncertain_parameters, nr_samples):
        """
        Calculate the Sobol indices.

        Parameters
        ----------
        evaluations : array_like
            The model evaluations, evaluated for the samples created by
            SALIB.sample.saltelli.
        nr_uncertain_parameters : int
            Number of uncertain parameters.
        nr_samples : int
            Number of samples used in the Monte Carlo sampling.

        Returns
        ----------
        sobol_first : list
            The first order Sobol indices for each uncertain parameter.
        sobol_total : list
            The total order Sobol indices for each uncertain parameter.
        """
        sobol_first = [0]*nr_uncertain_parameters
        sobol_total = [0]*nr_uncertain_parameters

        A, B, AB = self.separate_output_values(evaluations, nr_uncertain_parameters, nr_samples)

        for i in range(nr_uncertain_parameters):
            sobol_first[i] = first_order(A, AB[:, i], B)
            sobol_total[i] = total_order(A, AB[:, i], B)

        return sobol_first, sobol_total



[docs]    def average_sensitivity(self, data, sensitivity="sobol_first"):
        """
        Calculate the average of the sensitivities for the model and all
        features and add them to `data`. Ignores any occurrences of numpy.NaN.

        Parameters
        ----------
        data : Data
            A data object with all model and feature evaluations, as well as all
            calculated statistical metrics.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            The sensitivity to normalize and sum. "sobol_first" and "1" are
            for the first order Sobol indice while "sobol_total" and "t" is
            for the total order Sobol indices. Default is "sobol_first".

        Returns
        ----------
        data : Data
            The `data` object with the average of the sensitivities for
            the model and all features added.

        See also
        --------
        uncertainpy.Data
        """
        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        if sensitivity == "first":
            sensitivity = "sobol_first"
        elif sensitivity == "total":
            sensitivity = "sobol_total"

        for feature in data:
            if sensitivity in data[feature]:
                total_sense = []
                for i in range(0, len(data.uncertain_parameters)):
                    total_sense.append(np.nanmean(data[feature][sensitivity][i]))

                data[feature][sensitivity + "_average"] = np.array(total_sense)


        return data






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.efel_features

from __future__ import absolute_import, division, print_function, unicode_literals

try:
    import efel

    prerequisites = True
except ImportError:
    prerequisites = False

from .features import Features
from ..utils.logger import get_logger


[docs]class EfelFeatures(Features):
    """
    Calculating the mean value of each feature in the Electrophys Feature
    Extraction Library (eFEL), see: https://github.com/BlueBrain/eFEL.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    new_utility_methods : {None, list}, optional
        A list of new utility methods. All methods in this class that is not in
        the list of utility methods, is considered to be a feature.
        Default is None.
    interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        points between two evaluations. An interpolation is performed on
        each interpolate feature to create regular results.
        If ``"all"``, all features interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }

    strict : bool, optional
        If True, missing ``"stimulus_start"`` and ``"stimulus_end"`` from `info`
        raises a ValueError. If False the simulation start time is used
        as ``"stimulus_start"`` and the simulation end time is used for
        ``"stimulus_end"``. The decay_time_constant_after_stim feature becomes
        disabled with False. Default is True
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features to be interpolated.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.
    strict : bool
        If missing info values should raise an error.

    Raises
    ------
    ValueError
        If strict is True and ``"stimulus_start"`` and ``"stimulus_end"`` are
        missing from `info`.
    ValueError
        If stimulus_start >= stimulus_end.
    ImportError
        If Efel is not installed.

    Notes
    -----
    Efel features take the parameters ``(time, values, info)`` and require
    info["stimulus_start"] and info["stimulus_end"] to be set.

    Implemented Efel features are:

    ================================  ================================  ================================
    AHP1_depth_from_peak              AHP2_depth_from_peak              AHP_depth
    AHP_depth_abs                     AHP_depth_abs_slow                AHP_depth_diff
    AHP_depth_from_peak               AHP_slow_time                     AHP_time_from_peak
    AP1_amp                           AP1_begin_voltage                 AP1_begin_width
    AP1_peak                          AP1_width                         AP2_AP1_begin_width_diff
    AP2_AP1_diff                      AP2_AP1_peak_diff                 AP2_amp
    AP2_begin_voltage                 AP2_begin_width                   AP2_peak
    AP2_width                         AP_amplitude                      AP_amplitude_change
    AP_amplitude_diff                 AP_amplitude_from_voltagebase     AP_begin_indices
    AP_begin_time                     AP_begin_voltage                  AP_begin_width
    AP_duration                       AP_duration_change                AP_duration_half_width
    AP_duration_half_width_change     AP_end_indices                    AP_fall_indices
    AP_fall_rate                      AP_fall_rate_change               AP_fall_time
    AP_height                         AP_phaseslope                     AP_phaseslope_AIS
    AP_rise_indices                   AP_rise_rate                      AP_rise_rate_change
    AP_rise_time                      AP_width                          APlast_amp
    APlast_width                      BAC_maximum_voltage               BAC_width
    BPAPAmplitudeLoc1                 BPAPAmplitudeLoc2                 BPAPHeightLoc1
    BPAPHeightLoc2                    BPAPatt2                          BPAPatt3
    E10                               E11                               E12
    E13                               E14                               E15
    E16                               E17                               E18
    E19                               E2                                E20
    E21                               E22                               E23
    E24                               E25                               E26
    E27                               E3                                E39
    E39_cod                           E4                                E40
    E5                                E6                                E7
    E8                                E9                                ISI_CV
    ISI_log_slope                     ISI_log_slope_skip                ISI_semilog_slope
    ISI_values                        ISIs                              Spikecount
    Spikecount_stimint                adaptation_index                  adaptation_index2
    all_ISI_values                    amp_drop_first_last               amp_drop_first_second
    amp_drop_second_last              burst_ISI_indices                 burst_mean_freq
    burst_number                      check_AISInitiation               decay_time_constant_after_stim
    depolarized_base                  doublet_ISI                       fast_AHP
    fast_AHP_change                   initburst_sahp                    initburst_sahp_ssse
    initburst_sahp_vb                 interburst_voltage                inv_fifth_ISI
    inv_first_ISI                     inv_fourth_ISI                    inv_last_ISI
    inv_second_ISI                    inv_third_ISI                     inv_time_to_first_spike
    irregularity_index                is_not_stuck                      max_amp_difference
    maximum_voltage                   maximum_voltage_from_voltagebase  mean_AP_amplitude
    mean_frequency                    min_AHP_indices                   min_AHP_values
    min_voltage_between_spikes        minimum_voltage                   number_initial_spikes
    ohmic_input_resistance            ohmic_input_resistance_vb_ssse    peak_indices
    peak_time                         peak_voltage                      sag_amplitude
    sag_ratio1                        sag_ratio2                        single_burst_ratio
    spike_half_width                  spike_width2                      steady_state_hyper
    steady_state_voltage              steady_state_voltage_stimend      time
    time                              time_constant                     time_to_first_spike
    time_to_last_spike                time_to_second_spike              trace_check
    voltage                           voltage                           voltage_after_stim
    voltage_base                      voltage_deflection                voltage_deflection_begin
    voltage_deflection_vb_ssse
    ================================  ================================  ================================

    See also
    --------
    uncertainpy.features.EfelFeatures.reference_feature : reference_feature showing the requirements of a Efel feature function.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 interpolate=None,
                 labels={},
                 strict=True,
                 logger_level="info"):

        if not prerequisites:
            raise ImportError("Efel features require: efel")

        efel.reset()

        implemented_labels = {}

        super(EfelFeatures, self).__init__(new_features=new_features,
                                           features_to_run=features_to_run,
                                           interpolate=interpolate,
                                           new_utility_methods=[],
                                           labels=implemented_labels,
                                           logger_level=logger_level)

        def efel_wrapper(feature_name):
            def feature_function(time, values, info):
                disable = False
                logger = get_logger(self)


                if "stimulus_start" not in info:
                    if strict:
                        raise ValueError("Efel features require info['stimulus_start']. "
                                           "No 'stimulus_start' found in info, "
                                           "Set 'stimulus_start', or set strict to "
                                           "False to use initial time as stimulus start")
                    else:
                        info["stimulus_start"] = time[0]
                        logger.warning("Efel features require info['stimulus_start']. "
                                       "No 'stimulus_start' found in info, "
                                       "setting stimulus start as initial time")

                if "stimulus_end" not in info:
                    if strict:
                        raise ValueError("Efel features require info['stimulus_end']. "
                                         "No 'stimulus_end' found in info, "
                                         "Set 'stimulus_start', or set strict to "
                                         "False to use end time as stimulus end")
                    else:
                        info["stimulus_end"] = time[-1]
                        logger.warning("Efel features require info['stimulus_start']. "
                                       "No 'stimulus_end' found in info, "
                                       "setting stimulus end as end time")


                if info["stimulus_start"] >= info["stimulus_end"]:
                    raise ValueError("stimulus_start >= stimulus_end.")


                trace = {}
                trace["T"] = time
                trace["V"] = values
                trace["stim_start"] = [info["stimulus_start"]]
                trace["stim_end"] = [info["stimulus_end"]]


                # Disable decay_time_constant_after_stim if no time points left
                # in simulation after stimulation has ended.
                # Otherwise it throws an error
                if feature_name == "decay_time_constant_after_stim":
                    if info["stimulus_end"] >= time[-1]:
                        return None, None

                result = efel.getMeanFeatureValues([trace], [feature_name], raise_warnings=False)

                return None, result[0][feature_name]

            feature_function.__name__ = feature_name
            return feature_function

        for feature_name in efel.getFeatureNames():
            self.add_features(efel_wrapper(feature_name))

        self.labels = labels
        self.features_to_run = features_to_run





[docs]    def reference_feature(self, time, values, info):
        """
        An example of an Efel feature. Efel feature functions have the following
        requirements, and the given parameters must either be returned by
        ``model.run`` or ``features.preprocess``.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        values : array_like
            Result of the model.
        info : dictionary
            A dictionary with info["stimulus_start"] and info["stimulus_end"]
            set.

        Returns
        -------
        time : None
            No mean Efel feature has time values, so None is returned instead.
        values : array_like
            The feature results, `values`. Returns None if there are no feature
            results and that evaluation are disregarded.

        See also
        --------
        uncertainpy.features.Features.preprocess : The features preprocess method.
        uncertainpy.models.Model.run : The model run method
        """

        # Perform feature calculations here
        time = None
        values = None

        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.features

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np
import six

from ..utils.logger import setup_module_logger

[docs]class Features(object):
    """
    Class for calculating features of a model.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    new_utility_methods : {None, list}, optional
        A list of new utility methods. All methods in this class that is not in
        the list of utility methods, is considered to be a feature.
        Default is None.
    interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each irregular feature to create regular results.
        If ``"all"``, all features are interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }

    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features to be interpolated.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.

    See also
    --------
    uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 new_utility_methods=None,
                 interpolate=None,
                 labels={},
                 preprocess=None,
                 logger_level="info"):

        self.utility_methods = ["calculate_feature",
                                "calculate_features",
                                "calculate_all_features",
                                "__init__",
                                "implemented_features",
                                "preprocess",
                                "add_features",
                                "reference_feature",
                                "_preprocess",
                                "validate"]

        if new_utility_methods is None:
            new_utility_methods = []

        self._features_to_run = []
        self._interpolate = None
        self._labels = {}

        self.utility_methods += new_utility_methods

        self.interpolate = interpolate

        if new_features is not None:
            self.add_features(new_features, labels=labels)
        if preprocess is not None:
            self.preprocess = preprocess

        self.labels = labels
        self.features_to_run = features_to_run

        setup_module_logger(class_instance=self, level=logger_level)


    @property
    def preprocess(self):
        """
        Preprossesing of the time `time` and results `values` from the model, before the
        features are calculated.

        No preprocessing is performed, and the direct model results are
        currently returned. If preprocessing is needed it should follow the
        below format.

        Parameters
        ----------
        *model_results
            Variable length argument list. Is the values that ``model.run()``
            returns. By default it contains `time` and `values`, and then any number of
            optional `info` values.

        Returns
        -------
        preprocess_results
            Returns any number of values that are sent to each feature.
            The values returned must compatible with the input arguments of
            all features.

        Notes
        -----
        Perform a preprossesing of the model results before the results are sent
        to the calculation of each feature. It is used to perform common
        calculations that each feature needs to perform, to reduce the number of
        necessary calculations. The values returned must therefore be compatible
        with the input arguments to each features.


        See also
        --------
        uncertainpy.models.Model.run : The model run method
        """
        return self._preprocess


    def _preprocess(self, *model_result):
        return model_result

    @preprocess.setter
    def preprocess(self, new_preprocess_function):
        if not callable(new_preprocess_function):
            raise TypeError("preprocess function must be callable")

        self._preprocess = new_preprocess_function

    @property
    def labels(self):
        """
        Labels for the axes of each feature, used when plotting.

        Parameters
        ----------
        new_labels : dictionary
            A dictionary with key as the feature name and the value as a list of
            labels for each axis. The number of elements in the list corresponds
            to the dimension of the feature. Example:

            .. code-block:: Python

                new_labels = {"0d_feature": ["x-axis"],
                              "1d_feature": ["x-axis", "y-axis"],
                              "2d_feature": ["x-axis", "y-axis", "z-axis"]
                             }
        """
        return self._labels

    @labels.setter
    def labels(self, new_labels):
        self.labels.update(new_labels)


    @property
    def features_to_run(self):
        """
        Which features to calculate uncertainties for.

        Parameters
        ----------
        new_features_to_run : {"all", None, str, list of feature names}
            Which features to calculate uncertainties for.
            If ``"all"``, the uncertainties are calculated for all
            implemented and assigned features.
            If None, or an empty list , no features are
            calculated.
            If str, only that feature is calculated.
            If list of feature names, all listed features are
            calculated. Default is ``"all"``.

        Returns
        -------
        list
            A list of features to calculate uncertainties for.
        """
        return self._features_to_run

    @features_to_run.setter
    def features_to_run(self, new_features_to_run):
        if new_features_to_run == "all":
            self._features_to_run = self.implemented_features()
        elif new_features_to_run is None:
            self._features_to_run = []
        elif isinstance(new_features_to_run, six.string_types):
            self._features_to_run = [new_features_to_run]
        else:
            self._features_to_run = new_features_to_run


    @property
    def interpolate(self):
        """
        Features that require an interpolation.

        Which features are interpolated, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each interpolated feature to create regular results.

        Parameters
        ----------
        new_interpolate : {None, "all", str, list of feature names}
            If ``"all"``, all features are interpolated.
            If None, or an empty list, no features are interpolated.
            If str, only that feature is interpolated.
            If list of feature names, all listed features are interpolated.
            Default is None.

        Returns
        -------
        list
            A list of irregular features to be interpolated.
        """
        return self._interpolate


    @interpolate.setter
    def interpolate(self, new_interpolate):
        if new_interpolate == "all":
            self._interpolate = self.implemented_features()
        elif new_interpolate is None:
            self._interpolate = []
        elif isinstance(new_interpolate, six.string_types):
            self._interpolate = [new_interpolate]
        else:
            self._interpolate = new_interpolate



[docs]    def add_features(self, new_features, labels={}):
        """
        Add new features.

        Parameters
        ----------
        new_features : {callable, list of callables}
            The new features to add. The feature functions have the requirements
            stated in ``reference_feature``.
        labels : dictionary, optional
            A dictionary with the labels for the new features. The keys are the
            feature function names and the values are a list of labels for each
            axis. The number of elements in the list corresponds
            to the dimension of the feature. Example:

            .. code-block:: Python

                new_labels = {"0d_feature": ["x-axis"],
                              "1d_feature": ["x-axis", "y-axis"],
                              "2d_feature": ["x-axis", "y-axis", "z-axis"]
                             }

        Raises
        ------
        TypeError
            Raises a TypeError if `new_features`  is not callable or list of
            callables.

        Notes
        -----
        The features added are not added to ``features_to_run``.
        ``features_to_run`` must be set manually afterwards.

        See also
        --------
        uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
        """
        if callable(new_features):
            setattr(self, new_features.__name__, new_features)
            # self.features_to_run.append(new_features.__name__)

            tmp_label = labels.get(new_features.__name__)
            if tmp_label is not None:
                self.labels[new_features.__name__] = tmp_label
        else:
            try:
                for feature in new_features:
                    if callable(feature):
                        setattr(self, feature.__name__, feature)
                        # self.features_to_run.append(feature.__name__)

                        tmp_lables = labels.get(feature.__name__)
                        if tmp_lables is not None:
                            self.labels[feature.__name__] = tmp_lables
                    else:
                        raise TypeError("Feature in iterable is not callable")
            except TypeError as error:
                msg = "Added features must be a callable or list of callables"
                if not error.args:
                    error.args = ("",)
                error.args = error.args + (msg,)
                raise




[docs]    def calculate_feature(self, feature_name, *preprocess_results):
        """
        Calculate feature with `feature_name`.

        Parameters
        ----------
        feature_name : str
            Name of feature to calculate.
        *preprocess_results
            The values returned by ``preprocess``. These values are sent
            as input arguments to each feature. By default preprocess returns
            the values that ``model.run()`` returns, which contains `time` and
            `values`, and then any number of optional `info` values.
            The implemented features require that `info` is a single
            dictionary with the information stored as key-value pairs.
            Certain features require specific keys to be present.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values, or equivalent, of the feature, if no time values
            returns None or numpy.nan.
        values : array_like
            The feature results, `values` must either be regular (have the same
            number of points for different paramaters) or be able to be
            interpolated.

        Raises
        ------
        TypeError
            If `feature_name` is a utility method.

        See also
        --------
        uncertainpy.models.Model.run : The model run method
        """
        if feature_name in self.utility_methods:
            raise TypeError("{} is a utility method".format(feature_name))

        try:
            feature_result = getattr(self, feature_name)(*preprocess_results)
        except Exception as error:
            msg = "Error when calculating: {}".format(feature_name)
            if not error.args:
                error.args = ("",)
            error.args = error.args + (msg,)
            raise

        self.validate(feature_name, *feature_result)

        return feature_result



[docs]    def validate(self, feature_name, *feature_result):
        """
        Validate the results from ``calculate_feature``.

        This method ensures each returns `time`, `values`.

        Parameters
        ----------
        model_results
            Any type of model results returned by ``run``.
        feature_name : str
            Name of the feature, to create better error messages.

        Raises
        ------
        ValueError
            If the model result does not fit the requirements.
        TypeError
            If the model result does not fit the requirements.

        Notes
        -----
        Tries to verify that at least, `time` and `values` are returned from ``run``.
        ``model_result`` should follow the format: ``return time, values, info_1, info_2, ...``.
        Where:

        * ``time_feature`` : ``{None, numpy.nan, array_like}``
            Time values, or equivalent, of the feature, if no time values
            return None or numpy.nan.
        * ``values`` : ``{None, numpy.nan, array_like}``
            The feature results, `values` must either be regular (have the same
            number of points for different paramaters) or be able to be
            interpolated. If there are no feature results return
            None or ``numpy.nan`` instead of `values` and that evaluation are
            disregarded.
        """

        if isinstance(feature_result, np.ndarray):
            raise ValueError("{} returns an numpy array. ".format(feature_name) +
                             "This indicates only time or values is returned. " +
                             "{} must return time and values".format(feature_name) +
                             "(return time, values | return None, values)")

        if isinstance(feature_result, six.string_types):
            raise ValueError("{} returns a string. ".format(feature_name) +
                             "This indicates only time or values is returned. " +
                             "{} must return time and values".format(feature_name) +
                             "(return time, values | return None, values)")


        # Check that time, and values is returned
        try:
            time_feature, values_feature = feature_result
        except (ValueError, TypeError) as error:
            msg = "feature {} must return time and values (return time, values | return None, values)".format(feature_name)
            if not error.args:
                error.args = ("",)
            error.args = error.args + (msg,)
            raise




[docs]    def calculate_features(self, *model_results):
        """
        Calculate all features in ``features_to_run``.

        Parameters
        ----------
        *model_results
            Variable length argument list. Is the values that ``model.run()``
            returns. By default it contains `time` and `values`, and then any number of
            optional `info` values.

        Returns
        -------
        results : dictionary
            A dictionary where the keys are the feature names
            and the values are a dictionary with the time values `time` and feature
            results on `values`, on the form ``{"time": time, "values": values}``.

        Raises
        ------
        TypeError
            If `feature_name` is a utility method.

        Notes
        -----
        Checks that the feature returns two values.

        See also
        --------
        uncertainpy.features.Features.calculate_feature : Method for calculating a single feature.
        """
        preprocess_results = self.preprocess(*model_results)

        results = {}
        for feature in self.features_to_run:
            time_feature, values_feature = self.calculate_feature(feature, *preprocess_results)

            results[feature] = {"time": time_feature, "values": values_feature}

        return results



[docs]    def calculate_all_features(self, *model_results):
        """
        Calculate all implemented features.

        Parameters
        ----------
        *model_results
            Variable length argument list. Is the values that ``model.run()``
            returns. By default it contains `time` and `values`, and then any number of
            optional `info` values.


        Returns
        -------
        results : dictionary
            A dictionary where the keys are the feature names
            and the values are a dictionary with the time values `time` and feature
            results on `values`, on the form ``{"time": t, "values": U}``.

        Raises
        ------
        TypeError
            If `feature_name` is a utility method.

        Notes
        -----
        Checks that the feature returns two values.

        See also
        --------
        uncertainpy.features.Features.calculate_feature : Method for calculating a single feature.
        """
        preprocess_results = self.preprocess(*model_results)

        results = {}
        for feature in self.implemented_features():
            time_feature, values_feature = self.calculate_feature(feature, *preprocess_results)

            results[feature] = {"time": time_feature, "values": values_feature}

        return results



[docs]    def implemented_features(self):
        """
        Return a list of all callable methods in feature, that are not utility
        methods, does not starts with "_" and not a method of a general python object.

        Returns
        -------
        list
            A list of all callable methods in feature, that are not utility
            methods.
        """
        return [method for method in dir(self) if callable(getattr(self, method)) and method not in self.utility_methods and method not in dir(object) and not method.startswith("_")]



[docs]    def reference_feature(self, *preprocess_results):
        """
        An example feature. Feature function have the following requirements.

        Parameters
        ----------
        *preprocess_results
            Variable length argument list. Is the values that
            ``Features.preprocess`` returns. By default ``Features.preprocess``
            returns the same values as ``Model.run`` returns.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values, or equivalent, of the feature, if no time values
            return None or numpy.nan.
        values : array_like
            The feature results, `values` must either be regular (have the same
            number of points for different paramaters) or be able to be
            interpolated. If there are no feature results return
            None or numpy.nan instead of `values` and that evaluation are
            disregarded.

        See also
        --------
        uncertainpy.features.Features.preprocess : The features preprocess method.
        uncertainpy.models.Model.run : The model run method
        uncertainpy.models.Model.postprocess : The postprocessing method.
        """

        # Perform feature calculations here
        time = None
        values = None

        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.general_network_features

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np

try:
    import neo.core
    import quantities as pq

    prerequisites = True
except ImportError:
    prerequisites = False

from .features import Features


[docs]class GeneralNetworkFeatures(Features):
    """
    Class for creating NEO spiketrains from a list of spiketrains, for network
    models. The model must return the simulation end time and a list of
    spiketrains.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    new_utility_methods : {None, list}, optional
        A list of new utility methods. All methods in this class that is not in
        the list of utility methods, is considered to be a feature.
        Default is None.
       interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each irregular feature to create regular results.
        If ``"all"``, all features are interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }
    units : {None, Quantities unit}, optional
        The Quantities unit of the time in the model. If None, ms is used.
        The default is None.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.

    Notes
    -----
    All features in this set of features take the following input arguments:

    simulation_end : float
        The simulation end time
    neo_spiketrains : list
        A list of Neo spiketrains.

    The model must return:

    simulation_end : float
        The simulation end time
    spiketrains : list
        A list of spiketrains, each spiketrain is a list of the times when
        a given neuron spikes.

    Raises
    ------
    ImportError
        If neo or quantities is not installed.

    See also
    --------
    GeneralNetworkFeatures.preprocess
    GeneralNetworkFeatures.reference_feature : reference_feature showing the requirements of a feature function.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 interpolate=None,
                 labels={},
                 units=None,
                 logger_level="info"):

        if not prerequisites:
            raise ImportError("Network features require: neo, quantities")

        super(GeneralNetworkFeatures, self).__init__(new_features=new_features,
                                                     features_to_run=features_to_run,
                                                     interpolate=interpolate,
                                                     labels=labels,
                                                     logger_level=logger_level)
        if units is None:
            self.units = pq.ms
        else:
            self.units = units



[docs]    def preprocess(self, simulation_end, spiketrains):
        """
        Preprossesing of the simulation end time `simulation_end` and
        spiketrains `spiketrains` from the model, before the features are
        calculated.

        Parameters
        ----------
        simulation_end : float
            The simulation end time
        spiketrains : list
            A list of spiketrains, each spiketrain is a list of the times when
            a given neuron spikes.

        Returns
        -------
        simulation_end : float
            The simulation end time
        neo_spiketrains : list
            A list of Neo spiketrains.

        Raises
        ------
        ValueError
            If `simulation_end` is np.nan or None.

        Notes
        -----
        This preprocessing makes it so all features get the input
        `simulation_end` and `spiketrains`.

        See also
        --------
        uncertainpy.models.Model.run : The model run method
        """


        if simulation_end is None or np.isnan(simulation_end):
            raise ValueError("simulation_end is NaN or None. simulation_end must be the time when the simulation ends.")

        neo_spiketrains = []
        for spiketrain in spiketrains:
            neo_spiketrain = neo.core.SpikeTrain(spiketrain, t_stop=simulation_end, units=self.units)
            neo_spiketrains.append(neo_spiketrain)

        return simulation_end, neo_spiketrains




[docs]    def reference_feature(self, simulation_end, neo_spiketrains):
        """
        An example of an GeneralNetworkFeature. The feature functions have the
        following requirements, and the given parameters must either be
        returned by ``model.run`` or ``features.preprocess``.

        Parameters
        ----------
        simulation_end : float
            The simulation end time
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values, or equivalent, of the feature, if no time values
            return None or numpy.nan.
        values : array_like
            The feature results, `values`. Returns None if there are no feature
            results and that evaluation are disregarded.

        See also
        --------
        uncertainpy.features.GeneralSpikingFeatures.preprocess : The GeneralSpikingFeatures preprocess method.
        uncertainpy.models.Model.run : The model run method
        """

        # Perform feature calculations here
        time = None
        values = None

        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.general_spiking_features

from __future__ import absolute_import, division, print_function, unicode_literals

from .spikes import Spikes
from .features import Features


[docs]class GeneralSpikingFeatures(Features):
    """
    Class for calculating spikes of a model, works with single neuron models and
    voltage traces.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    new_utility_methods : {None, list}, optional
        A list of new utility methods. All methods in this class that is not in
        the list of utility methods, is considered to be a feature.
        Default is None.
    interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each irregular feature to create regular results.
        If ``"all"``, all features are interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    threshold : {float, int, "auto"}, optional
        The threshold where the model result is considered to have a spike.
        If "auto" the threshold is set to the standard variation of the
        result. Default is -30.
    end_threshold : {int, float}, optional
        The end threshold for a spike relative to the threshold. Generally
        negative values give the best results. Default is -10.
    extended_spikes : bool, optional
        If the found spikes should be extended further out than the threshold
        cuttoff. If True the spikes is considered to start and end where the
        derivative equals 0.5. Default is False.
    trim : bool, optional
        If the spikes should be trimmed back from the termination threshold,
        so each spike is equal the threshold at both ends. Default is True.
    normalize : bool, optional
        If the voltage traceshould be normalized before the spikes are
        found. If normalize is used threshold must be between [0, 1], and
        the end_threshold a similar relative value. Default is False.
    min_amplitude : {int, float}, optional
        Minimum height for what should be considered a spike. Default is 0.
    min_duration : {int, float}, optional
        Minimum duration for what should be considered a spike. Default is 0.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }

    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    spikes : Spikes object
        A Spikes object that contain all spikes.
    threshold : {float, int, "auto"}, optional
        The threshold where the model result is considered to have a spike.
        If "auto" the threshold is set to the standard variation of the
        result. Default is -30.
    end_threshold : {int, float}, optional
        The end threshold for a spike relative to the threshold.
        Default is -10.
    extended_spikes : bool
        If the found spikes should be extended further out than the threshold
        cuttoff.
    trim : bool
        If the spikes should be trimmed back from the termination threshold,
        so each spike is equal the threshold at both ends.
    normalize : bool
        If the voltage traceshould be normalized before the spikes are
        found. If normalize is used threshold must be between [0, 1], and
        the end_threshold a similar relative value.
    min_amplitude : {int, float}, optional
        Minimum height for what should be considered a spike. Default is 0.
    min_duration : {int, float}, optional
        Minimum duration for what should be considered a spike. Default is 0.
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features to be interpolated.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.

    See also
    --------
    uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
    uncertainpy.features.Spikes : Class for finding spikes in the model result.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 interpolate=None,
                 threshold=-30,
                 end_threshold=-10,
                 extended_spikes=False,
                 trim=True,
                 normalize=False,
                 min_amplitude=0,
                 min_duration=0,
                 labels={},
                 logger_level="info"):

        new_utility_methods = ["calculate_spikes"]

        super(GeneralSpikingFeatures, self).__init__(new_features=new_features,
                                                     features_to_run=features_to_run,
                                                     interpolate=interpolate,
                                                     new_utility_methods=new_utility_methods,
                                                     labels=labels,
                                                     logger_level=logger_level)

        self.spikes = None

        self.threshold = threshold
        self.end_threshold = end_threshold
        self.extended_spikes = extended_spikes
        self.trim = trim
        self.normalize = normalize
        self.min_amplitude = min_amplitude
        self.min_duration = min_duration


[docs]    def preprocess(self, time, values, info):
        """
        Calculating spikes from the model result.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        values : array_like
            Result of the model.
        info : dictionary
            A dictionary with info["stimulus_start"] and info["stimulus_end"].

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it returns None or numpy.nan.
        values : Spikes
            The spikes found in the model results.
        info : dictionary
            A dictionary with info["stimulus_start"] and info["stimulus_end"].

        Notes
        -----
        Also sets self.values = values, so features have access to self.values if necessary.

        See also
        --------
        uncertainpy.models.Model.run : The model run method
        uncertainpy.features.Spikes : Class for finding spikes in the model result.
        """
        self.values = values

        self.spikes = self.calculate_spikes(time,
                                            values,
                                            threshold=self.threshold,
                                            end_threshold=self.end_threshold,
                                            extended_spikes=self.extended_spikes,
                                            trim=self.trim,
                                            normalize=self.normalize,
                                            min_amplitude=self.min_amplitude,
                                            min_duration=self.min_duration)

        return time, self.spikes, info



[docs]    def calculate_spikes(self,
                        time,
                        values,
                        threshold=-30,
                        end_threshold=-10,
                        extended_spikes=False,
                        trim=True,
                        normalize=False,
                        min_amplitude=0,
                        min_duration=0):
        """
        Calculating spikes of a model result, works with single neuron models and
        voltage traces.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        values : array_like
            Result of the model.
        threshold : {float, int, "auto"}, optional
            The threshold where the model result is considered to have a spike.
            If "auto" the threshold is set to the standard variation of the
            result. Default is -30.
        end_threshold : {int, float}, optional
            The end threshold for a spike relative to the threshold.
            Default is -10.
        extended_spikes : bool, optional
            If the found spikes should be extended further out than the threshold
            cuttoff. If True the spikes is considered to start and end where the
            derivative equals 0.5. Default is False.
        trim : bool, optional
            If the spikes should be trimmed back from the termination threshold,
            so each spike is equal the threshold at both ends. Default is True.
        normalize : bool, optional
            If the voltage traceshould be normalized before the spikes are
            found. If normalize is used threshold must be between [0, 1], and
            the end_threshold a similar relative value. Default is False.
        min_amplitude : {int, float}, optional
            Minimum height for what should be considered a spike. Default is 0.
        min_duration : {int, float}, optional
            Minimum duration for what should be considered a spike. Default is 0.

        Returns
        ------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it returns None or numpy.nan.
        values : Spikes
            The spikes found in the model results.

        See also
        --------
        uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
        uncertainpy.features.Spikes : Class for finding spikes in the model result.
        """
        spikes = Spikes()

        spikes.find_spikes(time,
                           values,
                           threshold=threshold,
                           end_threshold=end_threshold,
                           extended_spikes=extended_spikes,
                           trim=trim,
                           normalize=normalize,
                           min_amplitude=min_amplitude,
                           min_duration=min_duration)

        return spikes



[docs]    def reference_feature(self, time, spikes, info):
        """
        An example of an GeneralSpikingFeature. The feature functions have the
        following requirements, and the input arguments must either be
        returned by ``Model.run`` or ``SpikingFeatures.preprocess``.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            A dictionary with info["stimulus_start"] and
            info["stimulus_end"] set.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values, or equivalent, of the feature, if no time values
            return None or numpy.nan.
        values : array_like
            The feature results, `values`. Returns None if there are no feature
            results and that evaluation are disregarded.

        See also
        --------
        uncertainpy.features.GeneralSpikingFeatures.preprocess : The GeneralSpikingFeatures preprocess method.
        uncertainpy.models.Model.run : The model run method
        """

        # Perform feature calculations here
        time = None
        values = None

        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.network_features

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np

try:
    import elephant
    import quantities as pq

    prerequisites = True
except ImportError:
    prerequisites = False

from .general_network_features import GeneralNetworkFeatures


[docs]class NetworkFeatures(GeneralNetworkFeatures):
    """
    Network features of a model result, works with all models that return
    the simulation end time, and a list of spiketrains.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each irregular feature to create regular results.
        If ``"all"``, all features are interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }
    units : {None, Quantities unit}, optional
        The Quantities unit of the time in the model. If None, ms is used.
        The default is None.
    instantaneous_rate_nr_samples : int
        The number of samples used to calculate the instantaneous rate.
        Default is 50.
    isi_bin_size : int
        The size of each bin in the ``binned_isi`` method.
        Default is 1.
    corrcoef_bin_size : int
        The size of each bin in the ``corrcoef`` method.
        Default is 1.
    covariance_bin_size : int
        The size of each bin in the ``covariance`` method.
        Default is 1.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features to be interpolated.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.
    logger : logging.Logger
        Logger object responsible for logging to screen or file.
    instantaneous_rate_nr_samples : int
        The number of samples used to calculate the instantaneous rate.
        Default is 50.
    isi_bin_size : int
        The size of each bin in the ``binned_isi`` method.
        Default is 1.
    corrcoef_bin_size : int
        The size of each bin in the ``corrcoef`` method.
        Default is 1.
    covariance_bin_size : int
        The size of each bin in the ``covariance`` method.
        Default is 1.

    Notes
    -----
    Implemented features are:

    ======================= ======================= =======================
    cv                      average_cv              average_isi,
    local_variation mean    local_variation         average_firing_rate
    instantaneous_rate      fanofactor              van_rossum_dist
    victor_purpura_dist     binned_isi              corrcoef
    covariance
    ======================= ======================= =======================

    All features in this set of features take the following input arguments:

    simulation_end : float
        The simulation end time
    neo_spiketrains : list
        A list of Neo spiketrains.

    The model must return:

    simulation_end : float
        The simulation end time
    spiketrains : list
        A list of spiketrains, each spiketrain is a list of the times when
        a given neuron spikes.

    Raises
    ------
    ImportError
        If elephant or quantities is not installed.

    See also
    --------
    uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 interpolate=None,
                 labels={},
                 units=None,
                 instantaneous_rate_nr_samples=50,
                 isi_bin_size=1,
                 corrcoef_bin_size=1,
                 covariance_bin_size=1,
                 logger_level="info"):

        if not prerequisites:
            raise ImportError("Network features require: elephant and quantities")

        if units is None:
            units = pq.ms

        unit_string = str(units).split()[1]

        implemented_labels = {"cv": ["Neuron nr", "Coefficient of variation"],
                              "average_cv": ["Average coefficient of variation"],
                              "average_isi": ["Average interspike interval ({})".format(unit_string)],
                              "local_variation": ["Neuron nr", "Local variation"],
                              "average_local_variation": ["Mean local variation"],
                              "average_firing_rate": ["Neuron nr", "Rate (Hz)"],
                              "instantaneous_rate": ["Time (ms)", "Neuron nr", "Rate (Hz)"],
                              "fanofactor": ["Fanofactor"],
                              "van_rossum_dist": ["Neuron nr", "Neuron nr", ""],
                              "victor_purpura_dist": ["Neuron nr", "Neuron nr", ""],
                              "binned_isi": ["Interspike interval ({})".format(unit_string),
                                             "Neuron nr", "Count"],
                              "corrcoef": ["Neuron nr", "Neuron nr", "Correlation coefficient"],
                              "covariance": ["Neuron nr", "Neuron nr", "Covariance"]
                             }

        implemented_labels.update(labels)

        super(NetworkFeatures, self).__init__(new_features=new_features,
                                              features_to_run=features_to_run,
                                              interpolate=interpolate,
                                              labels=implemented_labels,
                                              units=units)

        self.instantaneous_rate_nr_samples = instantaneous_rate_nr_samples
        self.isi_bin_size = isi_bin_size
        self.corrcoef_bin_size = corrcoef_bin_size
        self.covariance_bin_size = covariance_bin_size


[docs]    def cv(self, simulation_end, spiketrains):
        """
        Calculate the coefficient of variation for each neuron.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        values : array
            The coefficient of variation for each spiketrain.
        """
        if len(spiketrains) == 0:
            return None, None

        cv = []
        for spiketrain in spiketrains:
            cv.append(elephant.statistics.cv(spiketrain))

        return None, np.array(cv)



[docs]    def average_cv(self, simulation_end, spiketrains):
        """
        Calculate the average coefficient of variation.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        values : float
            The average coefficient of variation of each spiketrain.
        """
        if len(spiketrains) == 0:
            return None, None

        cv = []
        for spiketrain in spiketrains:
            cv.append(elephant.statistics.cv(spiketrain))

        return None, np.mean(cv)




[docs]    def binned_isi(self, simulation_end, spiketrains):
        """
        Calculate a histogram of the interspike interval.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : array
            The center of each bin.
        binned_isi : array
            The binned interspike intervals.
        """
        if len(spiketrains) == 0:
            return None, None

        binned_isi = []
        bins = np.arange(0, spiketrains[0].t_stop.magnitude + self.isi_bin_size, self.isi_bin_size)

        for spiketrain in spiketrains:
            if len(spiketrain) > 1:
                isi = elephant.statistics.isi(spiketrain)
                binned_isi.append(np.histogram(isi, bins=bins)[0])

            else:
                binned_isi.append(np.zeros(len(bins) - 1))

        centers = bins[1:] - 0.5
        return centers, binned_isi



[docs]    def average_isi(self, simulation_end, spiketrains):
        """
        Calculate the average interspike interval (isi) variation for each neuron.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        average_isi : float
           The average interspike interval.
        """
        if len(spiketrains) == 0:
            return None, None

        isi = []
        for spiketrain in spiketrains:
            if len(spiketrain) > 1:
                isi.append(np.mean(elephant.statistics.isi(spiketrain)))

        return None, np.mean(isi)



[docs]    def local_variation(self, simulation_end, spiketrains):
        """
        Calculate the measure of local variation.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        local_variation : list
            The local variation for each spiketrain.
        """
        if len(spiketrains) == 0:
            return None, None

        local_variation = []
        for spiketrain in spiketrains:
            isi = elephant.statistics.isi(spiketrain)
            if len(isi) > 1:
                local_variation.append(elephant.statistics.lv(isi))
            else:
                local_variation.append(None)

        return None, local_variation




[docs]    def average_local_variation(self, simulation_end, spiketrains):
        """
        Calculate the average of the local variation.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        average_local_variation : float
            The average of the local variation for each spiketrain.
        """
        if len(spiketrains) == 0:
            return None, None

        local_variation = []
        for spiketrain in spiketrains:
            isi = elephant.statistics.isi(spiketrain)
            if len(isi) > 1:
                local_variation.append(elephant.statistics.lv(isi))

        return None, np.mean(local_variation)



[docs]    def average_firing_rate(self, simulation_end, spiketrains):
        """
        Calculate the mean firing rate.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        average_firing_rate : float
            The mean firing rate of all neurons.
        """
        average_firing_rates = []

        if len(spiketrains) == 0:
            return None, None

        for spiketrain in spiketrains:
            average_firing_rate = elephant.statistics.mean_firing_rate(spiketrain)
            average_firing_rate.units = pq.Hz
            average_firing_rates.append(average_firing_rate.magnitude)

        return None, average_firing_rates



[docs]    def instantaneous_rate(self, simulation_end, spiketrains):
        """
        Calculate the mean instantaneous firing rate.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : array
            Time of the instantaneous firing rate.
        instantaneous_rate : float
            The instantaneous firing rate.
        """
        if len(spiketrains) == 0:
            return None, None

        instantaneous_rates = []
        t = None
        for spiketrain in spiketrains:
            if len(spiketrain) > 2:
                sampling_period = spiketrain.t_stop/self.instantaneous_rate_nr_samples
                # try/except to solve problem with elephant
                try:
                    instantaneous_rate = elephant.statistics.instantaneous_rate(spiketrain, sampling_period)
                    instantaneous_rates.append(np.array(instantaneous_rate).flatten())

                    if t is None:
                        t = instantaneous_rate.times.copy()
                        t.units = self.units
                except TypeError:
                    instantaneous_rates.append(None)

            else:
                instantaneous_rates.append(None)

        if t is None:
            return None, instantaneous_rates
        else:
            return t.magnitude, instantaneous_rates



[docs]    def fanofactor(self, simulation_end, spiketrains):
        """
        Calculate the fanofactor.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        fanofactor : float
            The fanofactor.
        """
        if len(spiketrains) == 0:
            return None, None


        return None, elephant.statistics.fanofactor(spiketrains)



[docs]    def van_rossum_dist(self, simulation_end, spiketrains):
        """
        Calculate van Rossum distance.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        van_rossum_dist : 2D array
            The van Rossum distance.
        """
        if len(spiketrains) == 0:
            return None, None

        van_rossum_dist = elephant.spike_train_dissimilarity.van_rossum_dist(spiketrains)

        # van_rossum_dist returns 0.j imaginary parts in some cases
        van_rossum_dist = np.real_if_close(van_rossum_dist)
        if np.any(np.iscomplex(van_rossum_dist)):
            return None, None

        return None, van_rossum_dist


[docs]    def victor_purpura_dist(self, simulation_end, spiketrains):
        """
        Calculate the Victor-Purpura's distance.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        values : 2D array
            The Victor-Purpura's distance.
        """
        if len(spiketrains) == 0:
            return None, None


        victor_purpura_dist = elephant.spike_train_dissimilarity.victor_purpura_dist(spiketrains)

        return None, victor_purpura_dist



[docs]    def corrcoef(self, simulation_end, spiketrains):
        """
        Calculate the pairwise Pearson's correlation coefficients.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        values : 2D array
            The pairwise Pearson's correlation coefficients.
        """
        if len(spiketrains) == 0:
            return None, None


        binned_sts = elephant.conversion.BinnedSpikeTrain(spiketrains,
                                                          binsize=self.corrcoef_bin_size*self.units)
        corrcoef = elephant.spike_train_correlation.corrcoef(binned_sts)

        return None, corrcoef


[docs]    def covariance(self, simulation_end, spiketrains):
        """
        Calculate the pairwise covariances.

        Parameters
        ----------
        simulation_end : float
            The simulation end time.
        neo_spiketrains : list
            A list of Neo spiketrains.

        Returns
        -------
        time : None
        values : 2D array
            The pairwise covariances.
        """
        if len(spiketrains) == 0:
            return None, None

        binned_sts = elephant.conversion.BinnedSpikeTrain(spiketrains,
                                                          binsize=self.covariance_bin_size*self.units)
        covariance = elephant.spike_train_correlation.covariance(binned_sts)

        return None, covariance






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.spikes

from __future__ import absolute_import, division, print_function, unicode_literals

from ..plotting.prettyplot import prettyPlot, create_figure, get_current_colormap

import matplotlib.pyplot as plt
import numpy as np


[docs]class Spike:
    """
    A single spike found in a voltage trace.

    Parameters
    ----------
    time : array_like
        The time array of the spike.
    V : array_like
        The voltage array of the spike.
    time_spike : {float, int}
        The timing of the peak of the spike.
    V_spike : {float, int}
        The voltage at the peak of the spike.
    global_index : int
        Index of the spike peak in the simulation.
    xlabel : str, optional
        Label for the x-axis.
    ylabel : str, optional
        Label for the y-axis.

    Attributes
    ----------
    time : array_like
        The time array of the spike.
    V : array_like
        The voltage array of the spike.
    time_spike : {float, int}
        The timing of the peak of the spike.
    V_spike : {float, int}
        The voltage at the peak of the spike.
    global_index : int
        Index of the spike peak in the simulation.
    xlabel : str, optional
        Label for the x-axis.
    ylabel : str, optional
        Label for the y-axis.
    """
    def __init__(self, time, V, time_spike, V_spike, global_index,
                 xlabel="", ylabel=""):
        self.time = time
        self.V = V

        self.V_spike = V_spike
        self.time_spike = time_spike

        self.global_index = global_index

        self.xlabel = xlabel
        self.ylabel = ylabel


[docs]    def plot(self, save_name=None):
        """
        Plot the spike.

        Parameters
        ----------
        save_name : {str, None}
            Name of the plot file. If None, the plot is shown instead of saved
            to disk.
            Default is None.
        """
        prettyPlot(self.time, self.V,
                   title="Spike",
                   xlabel=self.xlabel,
                   ylabel=self.ylabel)

        plt.xlim([min(self.time), max(self.time)])

        if save_name is None:
            plt.show()
        else:
            plt.savefig(save_name)
            plt.close()



[docs]    def trim(self, threshold, min_extent_from_peak=1):
        """
        Remove the first and last values of the spike that is below `threshold`.

        Parameters
        ----------
        threshold : {float, int}
            Remove all values from each side of the spike that is bellow this
            value.
        min_extent_from_peak : int, optional
            Minimum extent of the spike in each direction from the peak.
        """
        indices = np.where(self.V > threshold)[0]

        # TODO make sure this is the best way of "deleting a spike"
        if len(indices) == 0:
            self.time = None
            self.V = None
            self.V_spike = None
            self.time_spike = None
            self.global_index = None


        else:
            peak_index =  np.where(self.V == self.V_spike)[0][0]

            if indices[0] > 0:
                start_index = indices[0] - 1
            else:
                start_index = indices[0]

            end_index = indices[-1] + 2

            if start_index > 0 and start_index > peak_index - min_extent_from_peak:
                start_index = peak_index - min_extent_from_peak

            if end_index < len(self.V) and end_index < peak_index + min_extent_from_peak + 1:
                end_index = peak_index + min_extent_from_peak + 1

            self.time = self.time[start_index:end_index]
            self.V = self.V[start_index:end_index]


            # self.time = self.time[indices[0]:indices[-1] + 1]
            # self.V = self.V[indices[0]:indices[-1] + 1]



    def __str__(self):
        """
        Convert the spike to a readable string.

        Returns
        -------
        str
           A human readable string of the spike information.
        """

        output_str = "time: {}\nV: {}\ntime_spike: {}\nV_spike: {}\nglobal_index: {}".format(self.time, self.V, self.time_spike, self.V_spike, self.global_index)
        return output_str


    def __add__(self, other):
        """
        Join two spikes. Assumes spikes are found in the same voltage trace.
        """


        if np.all(np.isin(self.time, other.time)):
            new_time = other.time
            new_V = other.V
            new_time_spike = other.time_spike
            new_V_spike =  other.V_spike
            new_global_index = other.global_index

        elif np.all(np.isin(other.time, self.time)):
            new_time = self.time
            new_V = self.V
            new_time_spike = self.time_spike
            new_V_spike =  self.V_spike
            new_global_index = self.global_index
        else:
            if self.V_spike < other.V_spike:
                new_V_spike = other.V_spike
                new_time_spike = other.time_spike
                new_global_index = other.global_index
            else:
                new_V_spike = self.V_spike
                new_time_spike = self.time_spike
                new_global_index = self.global_index


            if self.time[0] < other.time[0]:
                first_spike = self
                last_spike = other
            else:
                first_spike = other
                last_spike = self

            remaining_V = last_spike.V[last_spike.time > first_spike.time[-1]]
            new_V = np.concatenate([first_spike.V, remaining_V])

            remaining_time = last_spike.time[last_spike.time > first_spike.time[-1]]
            new_time = np.concatenate([first_spike.time, remaining_time])

        return Spike(new_time, new_V, new_time_spike, new_V_spike, new_global_index)




[docs]class Spikes:
    """
    Finds spikes in the given voltage trace and is a container for the resulting
    Spike objects.

    Parameters
    ----------
    time : array_like
        The time of the voltage trace.
    V : array_like
        The voltage trace.
    threshold : {int, float, "auto"}
        The threshold for what is considered a spike. If the voltage trace rise
        above and then fall below this `threshold` + `end_threshold` it is
        considered a spike. If "auto" the threshold is set to the standard
        deviation of the voltage trace. Default is -30.
    end_threshold : {int, float}, optional
        The end threshold for a spike relative to the threshold. Generally
        negative values give the best results. Default is -10.
    extended_spikes : bool
        If the spikes should be extended past the threshold, until the
        derivative of the voltage trace is below 0.5. Default is False.
    trim : bool, optional
        If the spikes should be trimmed back from the termination threshold,
        so each spike is equal the threshold at both ends. Default is True.
    normalize : bool, optional
        If the voltage trace should be normalized before the spikes are
        found. If normalize is used threshold must be between [0, 1], and
        the end_threshold a similar relative value. Default is False.
    min_amplitude : {int, float}, optional
        Minimum height for what should be considered a spike. Default is 0.
    min_duration : {int, float}, optional
        Minimum duration for what should be considered a spike. Default is 0.
    xlabel : str, optional
        Label for the x-axis.
    ylabel : str, optional
        Label for the y-axis.

    Attributes
    ----------
    spikes : list
        A list of Spike objects.
    nr_spikes : int
        The number of spikes.
    xlabel : str, optional
        Label for the x-axis.
    ylabel : str, optional
        Label for the y-axis.
    time : array_like
        The time of the voltage trace.
    V : array_like
        The voltage trace.

    Notes
    -----
    The spikes are found by finding where the voltage trace goes above the
    `threshold`, and then later falls below this `threshold` + `end_threshold`.
    The spike is considered to be everything within this interval.

    The spike can be extended. If `extended_spikes` is True, the spike is
    extended around the above area until the derivative of the voltage trace
    falls below 0.5. This works badly with noisy voltage traces.

    See also
    --------
    Spike : The class for a single spike.
    find_spikes : Finding spikes in the voltage trace.
    """
    def __init__(self,
                 time=None,
                 V=None,
                 threshold=-30,
                 end_threshold=-10,
                 extended_spikes=False,
                 trim=True,
                 normalize=False,
                 min_amplitude=0,
                 min_duration=0,
                 xlabel="",
                 ylabel=""):

        self.spikes = []
        self.nr_spikes = 0

        self.xlabel = xlabel
        self.ylabel = ylabel

        self.V = None
        self.time = None

        if time is not None and V is not None:
            self.find_spikes(time, V,
                             threshold=threshold,
                             end_threshold=end_threshold,
                             extended_spikes=extended_spikes,
                             trim=trim,
                             normalize=normalize,
                             min_amplitude=min_amplitude,
                             min_duration=min_duration)


    def __iter__(self):
        """
        Iterate over all spikes.

        Yields
        ------
        Spike object
            A spike object.
        """
        for spike in self.spikes:
            yield spike


    def __str__(self):
        """
        Convert the spikes to a readable string.

        Returns
        -------
        str
           A human readable string of the spike information.
        """
        string = ""

        for i, spike in enumerate(self):
            string += "Spike {}\n---------------------------------------\n".format(i) + str(spike) + "\n\n"

        return string.strip()


    def __len__(self):
        """
        Find the number of spikes.

        Returns
        -------
        int
            The number of spikes.
        """
        return self.nr_spikes


    def __getitem__(self, i):
        """
        Return spike number `i`.

        Parameters
        ----------
        i: int
         Spike number `i`.

        Returns
        -------
        Spike object
            The spike object number `i`.
        """
        return self.spikes[i]


[docs]    def find_spikes(self,
                    time,
                    V,
                    threshold=-30,
                    end_threshold=-10,
                    extended_spikes=False,
                    trim=True,
                    normalize=False,
                    min_amplitude=0,
                    min_duration=0):
        """
        Finds spikes in the given voltage trace.

        Parameters
        ----------
        time : array_like
            The time of the voltage trace.
        V : array_like
            The voltage trace.
        threshold : {int, float, "auto"}
            The threshold for what is considered a spike. If the voltage trace rise
            above and then fall below this `threshold` + `end_threshold` it is
            considered a spike. If "auto" the threshold is set to the standard
            deviation of the voltage trace. Default is -30.
        end_threshold : {int, float}, optional
            The end threshold for a spike relative to the threshold. Generally
            negative values give the best results. Default is -10.
        extended_spikes : bool, optional
            If the spikes should be extended past the threshold, until the
            derivative of the voltage trace is below 0.5. Default is False.
        trim : bool, optional
            If the spikes should be trimmed back from the termination threshold,
            so each spike is equal the threshold at both ends. Default is True.
        normalize : bool, optional
            If the voltage traceshould be normalized before the spikes are
            found. If normalize is used threshold must be between [0, 1], and
            the end_threshold must have a absolute value between [0, 1]. Default
            is False.
        min_amplitude : {int, float}, optional
            Minimum height for what should be considered a spike. Default is 0.
        min_duration : {int, float}, optional
            Minimum duration for what should be considered a spike. Default is 0.

        Raises
        ------
        ValueError
            If the threshold is outside the interval [0, 1] when normalize=True.
        ValueError
            If the absolute value of end_threshold is outside the
            interval [0, 1] when normalize=True.

        Notes
        -----
        The spikes are added to ``self.spikes`` and ``self.nr_spikes`` is
        updated.

        The spikes are found by finding where the voltage trace goes above the
        `threshold`, and then later falls below this `threshold` + `end_threshold`.
        The spike is considered to be everything within this interval.

        The spike can be extended. If `extended_spikes` is True, the spike is
        extended around the above area until the derivative of the voltage trace
        falls below 0.5. This works badly with noisy voltage traces.
        """
        self.time = time
        self.V = V

        # Normalize the values
        if normalize:
            if threshold != "auto":
                if threshold > 1 or threshold < 0:
                    raise ValueError("Threshold must be between [0, 1] when normalize=True")

                if abs(end_threshold) > 1 or abs(end_threshold) < 0:
                    raise ValueError("Absolute value of end_threshold must be between [0, 1] when normalize=True")


            voltage = V.copy()
            voltage -= voltage.min()
            voltage /= voltage.max()


            if threshold == "auto":
                threshold = np.sqrt(voltage.var())

            rescaled_threshold = threshold*(V.max() - V.min()) + V.min()
        else:
            voltage = V

            if threshold == "auto":
                threshold = np.sqrt(voltage.var())

            rescaled_threshold = threshold


        min_extent_from_peak = 1
        derivative_cutoff = 0.5

        self.spikes = []

        spike_start = 0
        start_flag = False

        if extended_spikes:
            dVdt = np.gradient(voltage)

            gt_derivative = np.where(dVdt >= derivative_cutoff)[0]
            lt_derivative = np.where(dVdt <= -derivative_cutoff)[0]

        prev_spike_end = 0

        for i in range(len(V)):
            if voltage[i] > threshold and start_flag is False:
                if i > 0:
                    spike_start = i - 1
                else:
                    spike_start = i

                start_flag = True
                continue

            elif voltage[i] < (threshold + end_threshold) and start_flag is True:
                start_flag = False
                spike_end = i + 1

                time_spike = time[spike_start:spike_end]
                V_spike = V[spike_start:spike_end]

                spike_index = np.argmax(V_spike)
                global_index = spike_index + spike_start
                time_max = time[global_index]
                V_max = V[global_index]

                # Discard the first spike if the spike max is at the first
                # point in the voltage trace, or the voltage trace starts above
                # the threshold
                if global_index == 0 or spike_start == 0:
                    prev_spike_end = spike_end
                    continue


                if extended_spikes:
                    spike_start = gt_derivative[(gt_derivative > prev_spike_end) & (gt_derivative < global_index)][0]
                    spike_end = self.consecutive(lt_derivative[lt_derivative > global_index])[-1] + 1

                else:
                    # Check if the spike has the minimum required extent,
                    # if not extend the spike
                    # Should never be required with min_extent_from_peak = 1
                    if global_index > 0 and global_index - min_extent_from_peak < spike_start:
                        spike_start = global_index - min_extent_from_peak

                    if global_index < len(self.V) and global_index + min_extent_from_peak + 1 > spike_end:
                        spike_end = global_index + min_extent_from_peak + 1

                time_spike = time[spike_start:spike_end]
                V_spike = V[spike_start:spike_end]


                spike = Spike(time_spike, V_spike, time_max, V_max, global_index)


                if not extended_spikes and trim:
                    spike.trim(threshold=rescaled_threshold,
                               min_extent_from_peak=min_extent_from_peak)

                # Do not add if the spike is empty or less than minimum height
                # or less than minimum duration
                if spike.V is not None \
                        and (abs(spike.V_spike - spike.V.min()) >= min_amplitude) \
                        and ((spike.time[-1] - spike.time[0]) >= min_duration):

                    self.spikes.append(spike)


                prev_spike_end = spike_end


        self.nr_spikes = len(self.spikes)





[docs]    def consecutive(self, data):
        """
        Returns the first consecutive array, from a discontinuous index array
        such as [2, 3, 4, 5, 12, 13, 14], which returns [2, 3, 4, 5]

        Parameters
        ----------
        data : array_like

        Returns
        -------
        array_like
            The first consecutive array
        """

        result = [data[0]]
        d_prev = data[0]
        for d in data[1:]:
            if d_prev + 1 != d:
                return result
            d_prev = d

        return result



[docs]    def plot_spikes(self, save_name=None):
        """
        Plot all spikes.

        Parameters
        ----------
        save_name : {str, None}
            Name of the plot file. If None, the plot is shown instead of saved
            to disk. Default is None.
        """
        V_max = []
        V_min = []
        time_max = []
        labels = []

        i = 1

        if self.nr_spikes == 0:
            raise RuntimeWarning("No spikes to plot")

        create_figure(nr_colors=self.nr_spikes)

        for spike in self.spikes:
            V_max.append(max(spike.V))
            V_min.append(min(spike.V))
            time_max.append(len(spike.time))

            prettyPlot(range(len(spike.time)), spike.V,
                       title="Spikes",
                       xlabel="index",
                       ylabel=self.ylabel,
                       new_figure=False,
                       nr_colors=self.nr_spikes)

            labels.append("spike %d" % (i))
            i += 1


        plt.ylim([min(V_min), max(V_max)])
        plt.xlim([0, max(time_max)*1.2])
        plt.legend(labels)

        if save_name is None:
            plt.show()
        else:
            plt.savefig(save_name)
            plt.close()



[docs]    def plot_voltage(self, save_name):
        """
        Plot the voltage with the peak of each spike marked.

        Parameters
        ----------
        save_name : {str, None}
            Name of the plot file. If None, the plot is shown instead of saved
            to disk. Default is None.
        """
        ax = prettyPlot(self.time, self.V,
                        title=self.ylabel,
                        ylabel=self.ylabel,
                        xlabel="Time",
                        palette="deep")

        colors = get_current_colormap()

        for spike in self.spikes:
            ax.axvline(self.time[spike.global_index], color=colors[2])

        if save_name is None:
            plt.show()
        else:
            plt.savefig(save_name)
            plt.close()






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.features.spiking_features

from __future__ import absolute_import, division, print_function, unicode_literals

try:
    import scipy.interpolate
    import scipy.optimize

    prerequisites = True
except ImportError:
    prerequisites = False

import numpy as np

from .general_spiking_features import GeneralSpikingFeatures
from .spikes import Spikes
from ..utils.logger import get_logger

[docs]class SpikingFeatures(GeneralSpikingFeatures):
    """
    Spiking features of a model result, works with single neuron models and
    voltage traces.

    Parameters
    ----------
    new_features : {None, callable, list of callables}
        The new features to add. The feature functions have the requirements
        stated in ``reference_feature``. If None, no features are added.
        Default is None.
    features_to_run : {"all", None, str, list of feature names}, optional
        Which features to calculate uncertainties for.
        If ``"all"``, the uncertainties are calculated for all
        implemented and assigned features.
        If None, or an empty list ``[]``, no features are
        calculated.
        If str, only that feature is calculated.
        If list of feature names, all the listed features are
        calculated. Default is ``"all"``.
    new_utility_methods : {None, list}, optional
        A list of new utility methods. All methods in this class that is not in
        the list of utility methods, is considered to be a feature.
        Default is None.
    interpolate : {None, "all", str, list of feature names}, optional
        Which features are irregular, meaning they have a varying number of
        time points between evaluations. An interpolation is performed on
        each irregular feature to create regular results.
        If ``"all"``, all features are interpolated.
        If None, or an empty list, no features are interpolated.
        If str, only that feature is interpolated.
        If list of feature names, all listed features are interpolated.
        Default is None.
    threshold : {float, int, "auto"}, optional
        The threshold where the model result is considered to have a spike.
        If "auto" the threshold is set to the standard variation of the
        result. Default is -30.
    end_threshold : {int, float}, optional
        The end threshold for a spike relative to the threshold.
        Default is -10.
    extended_spikes : bool, optional
        If the found spikes should be extended further out than the threshold
        cuttoff. If True the spikes is considered to start and end where the
        derivative equals 0.5. Default is False.
    trim : bool, optional
        If the spikes should be trimmed back from the termination threshold,
        so each spike is equal the threshold at both ends. Default is True.
    normalize : bool, optional
        If the voltage traceshould be normalized before the spikes are
        found. If normalize is used threshold must be between [0, 1], and
        the end_threshold a similar relative value. Default is False.
    min_amplitude : {int, float}, optional
        Minimum height for what should be considered a spike. Default is 0.
    min_duration : {int, float}, optional
        Minimum duration for what should be considered a spike. Default is 0.
    labels : dictionary, optional
        A dictionary with key as the feature name and the value as a list of
        labels for each axis. The number of elements in the list corresponds
        to the dimension of the feature. Example:

        .. code-block:: Python

            new_labels = {"0d_feature": ["x-axis"],
                          "1d_feature": ["x-axis", "y-axis"],
                          "2d_feature": ["x-axis", "y-axis", "z-axis"]
                         }

    strict : bool, optional
        If True, missing ``"stimulus_start"`` and ``"stimulus_end"`` from `info`
        raises a ValueError. If False the simulation start time is used
        as ``"stimulus_start"`` and the simulation end time is used for
        ``"stimulus_end"``. Default is True.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging is performed.
        Default logger level is "info".

    Attributes
    ----------
    spikes : Spikes
        A Spikes object that contain all spikes.
    threshold : {float, int}
        The threshold where the model result is considered to have a spike.
    end_threshold : {int, float}
        The end threshold for a spike relative to the threshold.
    extended_spikes : bool
        If the found spikes should be extended further out than the threshold
        cuttoff.
    trim : bool
        If the spikes should be trimmed back from the termination threshold,
        so each spike is equal the threshold at both ends.
    normalize : bool
        If the voltage traceshould be normalized before the spikes are
        found. If normalize is used threshold must be between [0, 1], and
        the end_threshold a similar relative value.
    min_amplitude : {int, float}
        Minimum height for what should be considered a spike.
    min_duration : {int, float}
        Minimum duration for what should be considered a spike.
    features_to_run : list
        Which features to calculate uncertainties for.
    interpolate : list
        A list of irregular features to be interpolated.
    utility_methods : list
        A list of all utility methods implemented. All methods in this class
        that is not in the list of utility methods is considered to be a feature.
    labels : dictionary
        Labels for the axes of each feature, used when plotting.
    strict : bool
        If missing info values should raise an error.

    Raises
    ------
    ImportError
        If scipy is not installed.

    Notes
    -----
    The implemented features are:

    ==========================  ==========================
    nr_spikes                   time_before_first_spike
    spike_rate                  average_AP_overshoot
    average_AHP_depth           average_AP_width
    accommodation_index         average_duration
    ==========================  ==========================

    Most of the feature are from:
    Druckmann, S., Banitt, Y., Gidon, A. A., Schurmann, F., Markram, H., and Segev, I.
    (2007). A novel multiple objective optimization framework for constraining conductance-
    based neuron models by experimental data. Frontiers in Neuroscience 1, 7-18. doi:10.
    3389/neuro.01.1.1.001.2007

    See also
    --------
    uncertainpy.features.Features.reference_feature : reference_feature showing the requirements of a feature function.
    uncertainpy.features.Spikes : Class for finding spikes in the model result.
    """
    def __init__(self,
                 new_features=None,
                 features_to_run="all",
                 interpolate=None,
                 threshold=-30,
                 end_threshold=-10,
                 extended_spikes=False,
                 trim=True,
                 normalize=False,
                 min_amplitude=0,
                 min_duration=0,
                 labels={},
                 strict=True,
                 logger_level="info"):

        if not prerequisites:
            raise ImportError("Spiking features require: scipy")

        implemented_labels = {"nr_spikes": ["Number of spikes"],
                              "spike_rate": ["Spike rate (1/ms)"],
                              "time_before_first_spike": ["Time (ms)"],
                              "accommodation_index": ["Accommodation index"],
                              "average_AP_overshoot": ["Voltage (mV)"],
                              "average_AHP_depth": ["Voltage (mV)"],
                              "average_AP_width": ["Time (ms)"],
                              "average_duration": ["Time (ms)"]
                             }

        super(SpikingFeatures, self).__init__(new_features=new_features,
                                              features_to_run=features_to_run,
                                              interpolate=interpolate,
                                              threshold=threshold,
                                              end_threshold=end_threshold,
                                              extended_spikes=extended_spikes,
                                              trim=trim,
                                              normalize=normalize,
                                              min_amplitude=min_amplitude,
                                              min_duration=min_duration,
                                              labels=implemented_labels,
                                              logger_level=logger_level)
        self.labels = labels
        self.strict = strict


[docs]    def nr_spikes(self, time, spikes, info):
        """
        The number of spikes in the model result during the stimulus period.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            If ``strict=True``, requires ``info["stimulus_start"]`` and
            ``info['stimulus_end']`` set.

        Returns
        -------
        time : None
        nr_spikes : int
            The number of spikes in the model result.

        Raises
        ------
        ValueError
            If strict is True and ``"stimulus_start"`` and ``"stimulus_end"`` are
            missing from `info`.
        ValueError
            If stimulus_start >= stimulus_end.
        """
        logger = get_logger(self)

        if "stimulus_start" not in info:
            if self.strict:
                raise ValueError("nr_spikes require info['stimulus_start']. "
                                 "No 'stimulus_start' found in info, "
                                 "Set 'stimulus_start', or set strict to "
                                 "False to use initial time as stimulus start")
            else:
                info["stimulus_start"] = time[0]
                logger.warning("nr_spikes features require info['stimulus_start']. "
                               "No 'stimulus_start' found in info, "
                               "setting stimulus start as initial time")


        if "stimulus_end" not in info:
            if self.strict:
                raise ValueError("nr_spikes require info['stimulus_end']. "
                                 "No 'stimulus_end' found in info, "
                                 "Set 'stimulus_start', or set strict to "
                                 "False to use end time as stimulus end")
            else:
                info["stimulus_end"] = time[-1]
                logger.warning("nr_spikes require info['stimulus_start']. "
                               "No 'stimulus_end' found in info, "
                               "setting stimulus end as end time")

        if info["stimulus_start"] >= info["stimulus_end"]:
            raise ValueError("stimulus_start >= stimulus_end.")

        nr_spikes = 0
        for spike in spikes:
            if info["stimulus_start"] < spike.time_spike < info["stimulus_end"]:
                nr_spikes += 1

        return None, nr_spikes



[docs]    def time_before_first_spike(self, time, spikes, info):
        """
        The time from the stimulus start to the first spike occurs.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            If ``strict=True``, requires ``info["stimulus_start"]`` set.

        Returns
        -------
        time : None
        time_before_first_spike : {float, None}
            The time from the stimulus start to the first spike occurs. Returns
            None if there are no spikes on the model result.

        Raises
        ------
        ValueError
            If strict is True and ``"stimulus_start"`` and ``"stimulus_end"`` are
            missing from `info`.
        """
        logger = get_logger(self)

        if "stimulus_start" not in info:
            if self.strict:
                raise ValueError("time_before_first_spike require info['stimulus_start']. "
                                 "No 'stimulus_start' found in info, "
                                 "Set 'stimulus_start', or set strict to "
                                 "False to use initial time as stimulus start")
            else:
                info["stimulus_start"] = time[0]
                logger.warning("time_before_first_spike features require info['stimulus_start']. "
                               "No 'stimulus_start' found in info, "
                               "setting stimulus start as initial time")


        if spikes.nr_spikes <= 0:
            return None, None

        time = spikes.spikes[0].time_spike - info["stimulus_start"]

        return None, time



[docs]    def spike_rate(self, time, spikes, info):
        """
        The spike rate of the model result.

        Number of spikes divided by the duration.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            If ``strict=True``, requires ``info["stimulus_start"]`` and
            ``info['stimulus_end']`` set.

        Returns
        -------
        time : None
        spike_rate : float
            The spike rate of the model result.

        Raises
        ------
        ValueError
            If strict is True and ``"stimulus_start"`` and ``"stimulus_end"`` are
            missing from `info`.
        ValueError
            If stimulus_start >= stimulus_end.
        """
        logger = get_logger(self)

        if "stimulus_start" not in info:
            if self.strict:
                raise ValueError("spike_rate require info['stimulus_start']. "
                                 "No 'stimulus_start' found in info, "
                                 "Set 'stimulus_start', or set strict to "
                                 "False to use initial time as stimulus start")
            else:
                info["stimulus_start"] = time[0]
                logger.warning("spike_rate features require info['stimulus_start']. "
                               "No 'stimulus_start' found in info, "
                               "setting stimulus start as initial time")


        if "stimulus_end" not in info:
            if self.strict:
                raise ValueError("spike_rate require info['stimulus_end']. "
                                 "No 'stimulus_end' found in info, "
                                 "Set 'stimulus_start', or set strict to "
                                 "False to use end time as stimulus end")
            else:
                info["stimulus_end"] = time[-1]
                logger.warning("spike_rate require info['stimulus_start']. "
                               "No 'stimulus_end' found in info, "
                               "setting stimulus end as end time")

        if info["stimulus_start"] >= info["stimulus_end"]:
            raise ValueError("stimulus_start >= stimulus_end.")

        if spikes.nr_spikes < 0:
            return None, None

        return None, spikes.nr_spikes/float(info["stimulus_end"] - info["stimulus_start"])



[docs]    def average_AP_overshoot(self, time, spikes, info):
        """
        The average action potential overshoot,

        The average of the absolute peak voltage values of all spikes
        (action potentials).

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            Not used in this feature.

        Returns
        -------
        time : None
        average_AP_overshoot : {float, None}
            The average action potential overshoot. Returns None if there are
            no spikes in the model result.
        """

        if spikes.nr_spikes <= 0:
            return None, None

        sum_AP_overshoot = 0
        for spike in spikes:
            sum_AP_overshoot += spike.V_spike

        return None, sum_AP_overshoot/float(spikes.nr_spikes)



[docs]    def average_AHP_depth(self, time, spikes, info):
        """
        The average action potential depth.

        The minimum of the model result between two consecutive spikes (action
        potentials).

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            Not used in this feature.

        Returns
        -------
        time : None
        average_AHP_depth : {float, None}
            The average action potential depth. Returns None if there are
            no spikes in the model result.
        """


        if spikes.nr_spikes <= 2:
            return None, None

        sum_AHP_depth = 0
        for i in range(spikes.nr_spikes - 1):
            sum_AHP_depth += min(self.values[spikes[i].global_index:spikes[i+1].global_index])

        return None, sum_AHP_depth/float(spikes.nr_spikes)



[docs]    def average_AP_width(self, time, spikes, info):
        """
        The average action potential width.

        The average of the width of every spike (action potential) at the
        midpoint between the start and maximum of each spike.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            Not used in this feature.

        Returns
        -------
        time : None
        average_AP_width : {float, None}
            The average action potential width. Returns None if there are
            no spikes in the model result.
        """
        logger = get_logger(self)

        if spikes.nr_spikes <= 0:
            return None, None

        sum_AP_width = 0
        for spike in spikes:
            if len(spike.V) < 3:
                logger.warning("Spike with no width found (only one or two time points in spike).")
                continue

            V_width = (spike.V_spike + spike.V[0])/2.

            V_interpolation = scipy.interpolate.interp1d(spike.time, spike.V - V_width)

            # root1 = scipy.optimize.fsolve(U_interpolation, (spike.t_spike - spike.t[0])/2. + spike.t[0])
            # root2 = scipy.optimize.fsolve(U_interpolation, (spike.t[-1] - spike.t_spike)/2. + spike.t_spike)

            try:
                root1 = scipy.optimize.brentq(V_interpolation, spike.time[0], spike.time_spike)
                root2 = scipy.optimize.brentq(V_interpolation, spike.time_spike, spike.time[-1])

            except ValueError:
                return None, None


            sum_AP_width += abs(root2 - root1)

        return None, sum_AP_width/float(spikes.nr_spikes)



[docs]    def average_duration(self, time, spikes, info):
        """
        The average duration of an action potential, from the action potential
        onset to action potential termination.


        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            Not used in this feature.

        Returns
        -------
        time : None
        average_AP_width : {float, None}
            The average action potential width. Returns None if there are
            no spikes in the model result.
        """
        if spikes.nr_spikes <= 0:
            return None, None

        durations = []
        for spike in spikes:
            durations.append(spike.time[-1] - spike.time[0])

        return None, np.mean(durations)




[docs]    def accommodation_index(self, time, spikes, info):
        r"""
        The accommodation index.

        The accommodation index is the average of the difference in length of
        two consecutive interspike intervals normalized by the summed duration
        of the two interspike intervals.

        Parameters
        ----------
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values it is None or numpy.nan.
        spikes : Spikes
            Spikes found in the model result.
        info : dictionary
            Not used in this feature.

        Returns
        -------
        time : None
        accommodation_index : {float, None}
            The accommodation index. Returns None if there are
            less than two spikes in the model result.

        Notes
        -----
        The accommodation index is defined as:

        .. math::

            A = \frac{1}{N-k-1} \sum_{i=k}^N \frac{\text{ISI}_i - \text{ISI}_{i-1}}{\text{ISI}_i + \text{ISI}_{i-1}},

        where ISI is the interspike interval, N the number of spikes, and
        k is defined as:

        .. math::

            k = \min \left\{4, \frac{\text{Number of ISIs}}{5}\right\}.
        """
        N = spikes.nr_spikes
        if N <= 1:
            return None, None

        k = min(4, int(round(N-1)/5.))

        ISIs = []
        for i in range(N-1):
            ISIs.append(spikes[i+1].time_spike - spikes[i].time_spike)

        A = 0
        for i in range(k+1, N-1):
            A += (ISIs[i] - ISIs[i-1])/(ISIs[i] + ISIs[i-1])

        return None, A/(N - k - 1)






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.models.model

from __future__ import absolute_import, division, print_function, unicode_literals

import six
import numpy as np

from ..utils.logger import setup_module_logger, get_logger

[docs]class Model(object):
    """
    Class for storing the model to perform uncertainty quantification and
    sensitivity analysis on.

    The ``run`` method must either be implemented or set to a
    function, and is responsible for running the model.
    If you want to calculate features directly from the original model results,
    but still need to postprocess the model results to perform the
    uncertainty quantification, you can implement the postprocessing in the
    ``postprocess`` method.

    Parameters
    ----------
    run : {None, callable}, optional
        A function that implements the model. See the ``run`` method for
        requirements of the function. Default is None.
    interpolate : bool, optional
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    labels : list, optional
        A list of label names for the axes when plotting the model.
        On the form ``["x-axis", "y-axis", "z-axis"]``, with the number of axes
        that is correct for the model output. Default is an empty list.
    postprocess : {None, callable}, optional
        A function that implements the postprocessing of the model.
        See the ``postprocess`` method for requirements of the function.
        Default is None.
    ignore : bool, optional
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. Default is False.
    suppress_graphics : bool, optional
        Suppress all graphics created by the model. Default is False.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed.
        Default logger level is "info".
    **model_kwargs
        Any number of arguments passed to the model function when it is run.

    Attributes
    ----------
    labels : list
        A list of label names for the axes when plotting the model.
        On the form ``["x-axis", "y-axis", "z-axis"]``, with the number of axes
        that is correct for the model output.
    interpolate : bool
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    name : str
        Name of the model. Either the name of the class or the name of the
        function set as run.
    suppress_graphics : bool
        Suppress all graphics created by the model.
    ignore : bool
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. The model results are still
        postprocessed if a postprocessing is implemented. Default is False.

    See Also
    --------
    uncertainpy.models.Model.run
    uncertainpy.models.Model.postprocess
    """
    def __init__(self,
                 run=None,
                 interpolate=False,
                 labels=[],
                 postprocess=None,
                 ignore=False,
                 suppress_graphics=False,
                 logger_level="info",
                 **model_kwargs):

        self.interpolate = interpolate
        self.labels = labels
        self.ignore = ignore
        self.suppress_graphics = suppress_graphics

        self.model_kwargs = model_kwargs

        if run is not None:
            self.run = run
        else:
            self.name = self.__class__.__name__

        setup_module_logger(class_instance=self, level=logger_level)

        if postprocess is not None:
            self.postprocess = postprocess


    @property
    def run(self):
        """
        Run the model and return time and model result.

        This method must either be implemented or set to a function and is
        responsible for running the model. See Notes for requirements.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model. These parameters must be assigned to
            the model, either setting them with Python, or
            assigning them to the simulator.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values of the model, if no time values returns None or
            numpy.nan.
        values : array_like
            Result of the model. Note that `values` myst either be regular
            (have the same number of points for different paramaters) or be able
            to be interpolated.
        info, optional
            Any number of info objects that is passed on to feature calculations.
            It is recommended to use a single dictionary with the information
            stored as key-value pairs.
            This is what the implemented features requires, as well as
            require that specific keys to be present.

        Raises
        ------
        NotImplementedError
            If no run method have been implemented or set to a function.

        Notes
        -----
        The ``run`` method must either be implemented or set to a
        function. Both options have the following requirements:

        1. **Input.**
           The model function takes a number of arguments which define the
           uncertain parameters of the model.

        2. **Run the model.**
           The model must then be run using the parameters given as arguments.

        3. **Output.**
           The model function must return at least two objects,
           the model time (or equivalent, if applicable) and model output.
           Additionally, any number of optional info objects can be returned.
           In Uncertainpy,
           we refer to the time object as ``time``,
           the model output object as ``values``,
           and the remaining objects as ``info``.
           Note that while we refer to these objects as ``time``,
           ``values`` and ``info`` in Uncertainpy,
           it does not matter what you call the objects returned by
           the run function.

            1. **Time** (``time``).
               The ``time`` can be interpreted as the x-axis of the model.
               It is used when interpolating (see below),
               and when certain features are calculated.
               We can return ``None`` if the model has no time
               associated with it.

            2. **Model output** (``values``).
               The model output must either be regular, or it must be possible to
               interpolate or postprocess the output to a regular form.

            3. **Additional info** (``info``).
               Some of the methods provided by Uncertainpy,
               such as the later defined model postprocessing,
               feature preprocessing,
               and feature calculations,
               require additional information from the model (e.g., the time a
               neuron receives an external stimulus).
               We recommend to use a
               single dictionary as info object,
               with key-value pairs for the information,
               to make debugging easier.
               Uncertainpy always uses a single dictionary as the
               ``info`` object.
               Certain features require that specific keys are present in this
               dictionary.

        The model does not need to be implemented in Python, you can use any
        model/simulator as long as you are able to set the model parameters of
        the model from the run method Python and return the results from the
        model into the run method.

        If you want to calculate features directly from the original model results,
        but still need to postprocess the model results to perform the
        uncertainty quantification, you can implement the postprocessing in the
        ``postprocess`` method.

        See also
        --------
        uncertainpy.features
        uncertainpy.features.Features.preprocess : Preprocessing of model results before feature calculation
        uncertainpy.model.Model.postprocess : Postprocessing of model result.
        """
        return self._run


    @run.setter
    def run(self, new_run):
        if not callable(new_run):
            raise TypeError("run function must be callable")

        self._run = new_run
        self.name = new_run.__name__


    def _run(self, **parameters):
        raise NotImplementedError("No run method implemented or set in {class_name}".format(class_name=__name__))


[docs]    def evaluate(self, **parameters):
        """
        Run the model with parameters and default model_kwargs options,
        and validate the result.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model. These parameters must be assigned to
            the model, either setting them with Python, or
            assigning them to the simulator.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values of the model, if no time values returns None or
            numpy.nan.
        values : array_like
            Result of the model. Note that `values` myst either be regular
            (have the same number of points for different paramaters) or be able
            to be interpolated.
        info, optional
            Any number of info objects that is passed on to feature calculations.
            It is recommended to use a single dictionary with the information
            stored as key-value pairs.
            This is what the implemented features requires, as well as
            require that specific keys to be present.

        See also
        --------
        uncertainpy.models.Model.run : Requirements for the model run function.
        """
        all_parameters = self.model_kwargs.copy()
        all_parameters.update(parameters)

        model_result = self.run(**all_parameters)

        self.validate_run(model_result)

        return model_result


    @property
    def postprocess(self, *model_result):
        """
        Postprocessing of the time and results from the model.

        No postprocessing is performed, and the direct model results are
        currently returned.
        If postprocessing is needed it should follow the below format.

        Parameters
        ----------
        *model_result
            Variable length argument list. Is the values that ``run``
            returns. It contains `time` and `values`,
            and then any number of optional `info` values.
        time : {None, numpy.nan, array_like}
            Time values of the model. If no time values the model should return
            ``None`` or ``numpy.nan``.
        values : array_like
            Result of the model.
        info, optional
            Any number of info objects that is passed on to feature calculations.
            It is recommended to use a single dictionary with the information
            stored as key-value pairs.
            This is what the implemented features requires, as well as
            require that specific keys to be present.

        Returns
        -------
        time : {None, numpy.nan, array_like}
            Time values of the model, if no time values returns ``None`` or
            ``numpy.nan``.
        values : array_like
            The postprocessed model results, `values` must either be regular
            (have the same number of points for different paramaters) or be able
            to be interpolated.

        Notes
        -----
        Perform a postprocessing of the model results before they are sent to
        the uncertainty quantification.
        The model results must either be regular or be able to be interpolated.
        This is because the uncertainty quantification methods
        needs results with the same number of points for each set of parameters
        to be able to perform the uncertainty quantification.

        ``postprocess`` is implemented to make
        the model results regular, or on a form that can be interpolated.
        The results from the postprocessing is not
        used to calculate features, and is therefore used if you
        want to calculate features directly from the original model results,
        but still need to postprocess the model results to perform the
        uncertainty quantification.

        The requirements for a ``postprocess`` function are:

        1. **Input.**
           ``postprocess`` must take the objects returned by the
           model function as input arguments.

        2. **Postprocessing.**
           The model time (``time``) and output (``values``) must
           be postprocessed to a regular form, or to a form that can be
           interpolated to a regular form by Uncertainpy.
           If additional information is needed from the model, it can be passed
           along in the ``info`` object.

        3. **Output.**
           The ``postprocess`` function must return two objects:

           1. **Model time** (``time_postprocessed``).
              The first object is the postprocessed time (or equivalent)
              of the model.
              We can return ``None`` if the model has no time.
              Note that the automatic interpolation of the postprocessed
              time can only be performed if a postprocessed time is returned
              (if an interpolation is required).

           2. **Model output** (``values_postprocessed``).
              The second object is the postprocessed model output.
        """
        return self._postprocess


    def _postprocess(self, *model_result):
        return model_result[:2]


    @postprocess.setter
    def postprocess(self, new_postprocess_function):
        if not callable(new_postprocess_function):
            raise TypeError("postprocess function must be callable")

        self._postprocess = new_postprocess_function


[docs]    def validate_run(self, model_result):
        """
        Validate the results from ``run``.

        This method ensures ``run`` returns `time`, `values`, and optional
        info objects.

        Parameters
        ----------
        model_results
            Any type of model results returned by ``run``.

        Raises
        ------
        ValueError
            If the model result does not fit the requirements.
        TypeError
            If the model result does not fit the requirements.

        Notes
        -----
        Tries to verify that at least, `time` and `values` are returned from ``run``.
        ``model_result`` should follow the format: ``return time, values, info_1, info_2, ...``.
        Where:

        * ``time`` : ``{None, numpy.nan, array_like}``.
          Time values of the model. If no time values it should return None or
          numpy.nan.
        * ``values`` : ``array_like``
          Result of the model.
        * ``info``, optional.
          Any number of info objects that is passed on to feature calculations.
          It is recommended to use a single dictionary with the information
          stored as key-value pairs.
          This is what the implemented features requires, as well as
          require that specific keys to be present.

        See Also
        --------
        uncertainpy.models.Model.run
        """
        if isinstance(model_result, np.ndarray):
            raise ValueError("model.run() returns an numpy array. "
                             "This indicates only time or values is returned. "
                             "model.run() or model function must return "
                             "time and values "
                             "(return time, values | return None, values)")

        if isinstance(model_result, six.string_types):
            raise ValueError("model.run() returns an string. "
                             "This indicates only time or values is returned. "
                             "model.run() or model function must return "
                             "time and values "
                             " (return time, values | return None, values)")

        try:
            time, values = model_result[:2]
        except (ValueError, TypeError) as error:
            msg = "model.run() or model function must return time and values (return time, values | return None, values)"
            if not error.args:
                error.args = ("",)
            error.args = error.args + (msg,)
            raise




[docs]    def validate_postprocess(self, postprocess_result):
        """
        Validate the results from ``postprocess``.

        This method ensures that ``postprocess`` returns `time` and `values`.

        Parameters
        ----------
        model_results
            Any type of postprocessed model results returned by ``postprocess``.

        Raises
        ------
        ValueError
            If the postprocessed model result does not fit the requirements.
        TypeError
            If the postprocessed model result does not fit the requirements.

        Notes
        -----
        Tries to verify that `time` and `values` are returned from ``postprocess``.
        ``postprocess`` must return two objects on the format:
        ``return time, values``, where:

        * ``time_postprocessed`` : ``{None, numpy.nan, array_like}``.
            The first object is the postprocessed time (or equivalent)
            of the model.
            We can return ``None`` if the model has no time.
            Note that the automatic interpolation of the postprocessed
            time can only be performed if a postprocessed time is returned
            (if an interpolation is required).
        * ``values_postprocessed`` : ``array_like``.
            The second object is the postprocessed model output.

        Both of these must be regular or on a form that can be interpolated.

        See Also
        --------
        uncertainpy.models.Model.postprocess
        """
        if isinstance(postprocess_result, np.ndarray):
            raise ValueError("model.postprocess() returns an numpy array. "
                             "This indicates only time or values is returned. "
                             "model.postprocess() or model function must return "
                             "time and values "
                             "(return time, values | return None, values)")

        if isinstance(postprocess_result, six.string_types):
            raise ValueError("model.postprocess() returns an string. "
                             "This indicates only time or values is returned. "
                             "model.postprocess() or model function must return "
                             "time and values "
                             " (return time, values | return None, values)")
            try:
                time_postprocess, values_postprocess = postprocess_result
            except (ValueError, TypeError) as error:
                msg = "model.postprocess() must return time and values (return time, values | return None, values)"
                if not error.args:
                    error.args = ("",)
                error.args = error.args + (msg,)
                raise




[docs]    def set_parameters(self, **parameters):
        """
        Set all named arguments as attributes of the model class.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            All set as attributes of the class.
        """
        for parameter in parameters:
            setattr(self, parameter, parameters[parameter])






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.models.nest_model

from __future__ import absolute_import, division, print_function, unicode_literals

try:
    import nest

    prerequisites = True
except ImportError:
    prerequisites = False

import numpy as np

from .model import Model
from ..utils.logger import setup_module_logger, get_logger

[docs]class NestModel(Model):
    """
    Class for NEST simulator models.

    The ``run`` method must either be implemented or set to a
    function, and is responsible for running the NEST model.

    Parameters
    ----------
    run : {None, function}, optional
        A function that implements the model. See Note for requirements of the
        function. Default is None.
    interpolate : bool, optional
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    ignore : bool, optional
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. Default is False.
    labels : list, optional
        A list of label names for the axes when plotting the model.
        On the form ``["x-axis", "y-axis", "z-axis"]``, with the number of axes
        that is correct for the model output.
        Default is ``["Time (ms)", "Neuron nr", "Spiking probability"]``.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed.
        Default logger level is "info".
    **model_kwargs
        Any number of arguments passed to the model function when it is run.

    Attributes
    ----------
    run : uncertainpy.models.Model.run
    labels : list, optional
        A list of label names for the axes when plotting the model.
    interpolate : bool
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    ignore : bool, optional
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. The model results are still
        postprocessed. Default is False.

    Raises
    ------
    ImportError
        If nest is not installed.

    See Also
    --------
    uncertainpy.models.NestModel.run
    """
    def __init__(self,
                 run=None,
                 interpolate=False,
                 ignore=False,
                 labels=["Time (ms)", "Neuron nr", "Spiking probability"],
                 logger_level="info",
                 **model_kwargs):


        if not prerequisites:
            raise ImportError("NestModel requires: nest")

        super(NestModel, self).__init__(run=run,
                                        interpolate=interpolate,
                                        ignore=ignore,
                                        labels=labels,
                                        **model_kwargs)

        setup_module_logger(class_instance=self, level=logger_level)


    @Model.run.getter
    def run(self):
        """
        Run a Nest model and return the final simulation time and the
        spiketrains.

        This method must either be implemented or set to a function and is
        responsible for running the model. See Notes for requirements.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model. These parameters must be assigned to
            the NEST model.

        Returns
        -------
        simulation_end : {int, float}
            The final simulation time.
        spiketrains : list
            A list of spike trains for each neuron.

        Raises
        ------
        NotImplementedError
            If no ``run`` method have been implemented or set to a function.

        Notes
        -----
        The ``run`` method must either be implemented or set to a
        function. Both options have the following requirements:

        1. **Input.**
           The model function takes a number of arguments which define the
           uncertain parameters of the model.

        2. **Run the model.**
           The NEST model must then be run using the parameters given as arguments.

        3. **Output.**
           The model function must return:

            1. **Time** (``simulation_end``).
               The final simulation time of the NEST model.

            2. **Model output** (``spiketrains``).
               A list if spike trains from each recorded neuron.


        The model results `simulation_end` and `spiketrains` are used to calculate
        the features, and is postprocessed to create a regular result before
        the calculating the uncertainty of the model.

        See also
        --------
        uncertainpy.model.Model.postprocess
        """
        return self._run


[docs]    def postprocess(self, simulation_end, spiketrains):
        """
        Postprocessing of the spiketrains from a Nest model.

        For each neuron, convert a spiketrain to a list of the probability for
        a spike at each timestep, as well as creating a time array. For each
        timestep in the simulation the result is 0 if there is no spike
        and 1 if there is a spike.

        Parameters
        ----------
        simulation_end : {int, float}
            The final simulation time.
        spiketrains : list
            A list of spike trains for each neuron.

        Returns
        -------
        time : array
            A time array of all time points in the Nest simulation.
        spiketrains : list
            A list of the probability for a spike at each timestep, for each
            neuron.

        Example
        -------
        In a simulation that gives the spiketrain ``[0, 2, 3]``, with a
        time resolution of 0.5 ms and that ends after 4 ms,
        the resulting spike train become:
        ``[1, 0, 0, 0, 1, 0, 1, 0, 0]``.
        """

        dt = nest.GetKernelStatus()["resolution"]
        time = np.arange(0, simulation_end, dt)

        expanded_spiketrains = []
        for spiketrain in spiketrains:
            binary_spike = np.zeros(len(time))
            binary_spike[np.in1d(time, spiketrain)] = 1

            expanded_spiketrains.append(binary_spike)

        values = np.array(expanded_spiketrains)

        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.models.neuron_model

from __future__ import absolute_import, division, print_function, unicode_literals

import os

import numpy as np
import importlib

from .model import Model
from ..utils.logger import setup_module_logger, get_logger


[docs]class NeuronModel(Model):
    """
    Class for Neuron simulator models.

    Loads a Neuron simulation, runs it, and measures the voltage in the soma.

    Parameters
    ----------
    file : str, optional
        Filename of the Neuron model. Default is ``"mosinit.hoc"``.
    path : str, optional
        Path to the Neuron model. If None, the file is considered to be in the
        current folder. Default is "".
    stimulus_start : {int, float, None}, optional
        The start time of any stimulus given to the neuron model. This
        is added to the info dictionary. If None, no stimulus_start is added to
        the info dictionary. Default is None.
    stimulus_end : {int, float, None}, optional
        The end time of any stimulus given to the neuron model. This
        is added to the info dictionary. If None, no stimulus_end is added to
        the info dictionary. Default is None.
    interpolate : bool, optional
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    name : {None, str}, optional
        Name of the model, if None the model gets the name of the current class.
        Default is None.
    ignore : bool, optional
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. Default is False.
    run : {None, callable}, optional
        A function that implements the model. See the ``run`` method for
        requirements of the function. Default is None.
    record_from : {str}, optional
        Name of the section in the NEURON model where voltage should
        be recorded.
        Default is ``"soma"``.
    labels : list, optional
        A list of label names for the axes when plotting the model.
        On the form ``["x-axis", "y-axis", "z-axis"]``, with the number of axes
        that is correct for the model output.
        Default is ``["Time (ms)", "Membrane potential (mv)"]``.
    suppress_graphics : bool, optional
        Suppress all graphics created by the Neuron model. Default is True.
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed
        Default logger level is "info".
    info : dict, optional
        Dictionary added to info. Default is an empty dictionary.
    **model_kwargs
        Any number of arguments passed to the model function when it is run.

    Attributes
    ----------
    run : uncertainpy.models.Model.run
    labels : list
        A list of label names for the axes when plotting the model.
        On the form ``["x-axis", "y-axis", "z-axis"]``, with the number of axes
        that is correct for the model output.
    interpolate : bool
        True if the model is irregular, meaning it has a varying number of
        return values between different model evaluations, and
        an interpolation of the results is performed. Default is False.
    suppress_graphics : bool
        Suppress all graphics created by the model.
    ignore : bool
        Ignore the model results when calculating uncertainties, which means the
        uncertainty is not calculated for the model. The model results are still
        postprocessed if a postprocessing is implemented. Default is False.

    Raises
    ------
    RuntimeError
        If no section with name ``soma`` is found in the Neuron model.

    Notes
    -----
    Measures the voltage in the section with name ``soma``.
    """
    def __init__(self,
                 file="mosinit.hoc",
                 path="",
                 interpolate=True,
                 stimulus_start=None,
                 stimulus_end=None,
                 name=None,
                 ignore=False,
                 run=None,
                 record_from="soma",
                 labels=["Time (ms)", "Membrane potential (mV)"],
                 suppress_graphics=True,
                 logger_level="info",
                 info={},
                 **model_kwargs):

        super(NeuronModel, self).__init__(interpolate=interpolate,
                                          ignore=ignore,
                                          labels=labels,
                                          suppress_graphics=suppress_graphics,
                                          **model_kwargs)

        self.file = file
        self.path = path
        self.info = info

        if stimulus_end:
            self.info["stimulus_end"] = stimulus_end

        if stimulus_start:
            self.info["stimulus_start"] = stimulus_start

        if run is not None:
            self.run = run

        if name:
            self.name = name

        self.time = None
        self.V = None
        self.rec_section = record_from

        setup_module_logger(class_instance=self, level=logger_level)



[docs]    def load_neuron(self, path, file):
        """
        Import neuron and a neuron simulation file.

        Parameters
        ----------
        file : str
            Filename of the Neuron model. must be a ``.hoc`` file.
        path : str
            Path to the Neuron model.

        Returns
        -------
        h : Neuron object
            Neurons h object.

        Raises
        ------
        ImportError
            If neuron is not installed.
        """
        current_dir = os.getcwd()
        os.chdir(path)

        try:
            import neuron
        except ImportError:
            raise ImportError("NeuronModel requires: neuron")

        h = neuron.h

        h.load_file(0, file.encode())

        os.chdir(current_dir)

        return h




[docs]    def load_python(self, path, file, name):
        """
        Import a Python neuron simulation located in function in `path`/`file`
        with name `name`.

        Parameters
        ----------
        file : str
            Filename of the Neuron model. must be a ``.hoc`` file.
        path : str
            Path to the Neuron model.
        name : str
            Name of the run function.

        Returns
        -------
        model : a run function
            A python function imported from `path`/`file` with name `name`.

        See also
        --------
        uncertainpy.models.Model.run : Requirements for the model run function.
        """
        current_dir = os.getcwd()

        if path:
            os.chdir(path)

        file = file.strip(".py")
        module_path = os.path.join(path, file)
        module_path = module_path.strip(os.sep)
        module_name = module_path.replace(os.sep, ".")

        module = importlib.import_module(module_name)
        model = getattr(module, name)

        os.chdir(current_dir)

        return model




    # Be really careful with these. Need to make sure that all references to
    # neuron are inside this class
    def _record(self, ref_data):
        """
        Record data from a neuron simulation.
        """
        data = self.h.Vector()
        data.record(getattr(self.h, ref_data))
        return data


    def _to_array(self, hocObject):
        """
        Convert a Neuron Vector object to an array.

        Parameters
        ----------
        hocObject : A Neuron Vector object.
            A Neuron Vector object to convert to an array.

        Returns
        -------
        array : array
            The converted array.
        """
        array = np.zeros(int(round(hocObject.size())))
        hocObject.to_python(array)
        return array


    def _record_v(self):
        """
        Record voltage in the requested compartment.

        Raises
        ------
        RuntimeError
            If no section with name ``self.compartment`` is found in the Neuron model.
        """

        # Check if the requested compartment is defined in the model and proceed
        # only if it is found. All this processing is case insensitive.
        section_names = [s.name().lower() for s in self.h.allsec()]
        if self.rec_section.lower() not in section_names:
            raise RuntimeError(
                "No section with name {c} found in {n}. Unable to record.".format(
                    c=self.rec_section, n=self.name))

        compartment_ind = section_names.index(self.rec_section.lower())
        section = list(self.h.allsec())[compartment_ind]

        self.h("objref voltage_soma")
        self.h("voltage_soma = new Vector()")
        self.h.voltage_soma.record(section(0.5)._ref_v)

        # Final check to make sure NEURON accepted the commands.
        if not hasattr(self.h, "voltage_soma"):
            raise RuntimeError(
                "No section with name {c} found in {n}. Unable to record.".format(
                    c=self.rec_section, n=self.name))


    def _record_t(self):
        """
        Record time values
        """
        if self.time is None:
            self.time = self._record("_ref_t")



    @Model.run.setter
    def run(self, new_run):
        """
        Load, either from a NEURON or Python file, and run a Neuron simulation
        and return the model result.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model which are either set in Neuron or
            given as arguments to the Python run function.

        Returns
        -------
        time : array
            Time values of the model.
        values : array
            Voltage of the neuron. Note that `values` must either be regular
            (have the same number of points for different parameters) or be able
            to be interpolated.
        info : dictionary
            A dictionary with information needed by features.
            ``"stimulus_start"`` and ``"stimulus_end"`` are returned in the info
            dictionary if they are given as parameters to ``NeuronModel``.
            If a info dictionary is returned by the model function it is updated
            with ``"stimulus_start"`` and ``"stimulus_end"`` if they are given
            as parameters to ``NeuronModel``.

        Notes
        -----
        The Python neuron simulation is located in  a function in `path`/`file`
        and name `name`. At least `file` and `name` must be given.

        A NEURON simulation is located in a ``.hoc`` file and returns the
        model voltage in soma.

        Efel features require ``"stimulus_start"`` and ``"stimulus_end"``
        as keys, while spiking_features require ``stimulus_start"``.

        See also
        --------
        uncertainpy.models.Model.run : Requirements for the model run function.
        """
        Model.run.fset(self, new_run)



    def _run(self, **parameters):
        if self.file.endswith(".hoc"):
            result = self.run_neuron(**parameters)

        elif self.file.endswith(".py"):
            result = self.run_python(**parameters)

        else:
            raise ValueError("Unknown fileformat on file: {}".format(self.file))
        return result


[docs]    def run_neuron(self, **parameters):
        """
        Load and run a Neuron simulation from a ``.hoc`` file and return the
        model voltage in soma.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model which are set in Neuron.

        Returns
        -------
        time : array
            Time values of the model.
        values : array
            Voltage of the neuron. Note that `values` must either be regular
            (have the same number of points for different parameters) or be able
            to be interpolated.
        info : dictionary
            A dictionary with information needed by features. Efel features
            require ``"stimulus_start"`` and ``"stimulus_end"``
            as keys, while spiking_features require ``stimulus_start"``.
        info : dictionary
            A dictionary with information needed by features.
            ``"stimulus_start"`` and ``"stimulus_end"`` are returned in the info
            dictionary if they are given as parameters to ``NeuronModel``.

        Notes
        -----
        Efel features require ``"stimulus_start"`` and ``"stimulus_end"``
        as keys, while spiking_features require ``stimulus_start"``.

        See also
        --------
        uncertainpy.models.Model.run : Requirements for the model run function.
        """

        self.h = self.load_neuron(self.path, self.file)

        self.set_parameters(parameters)

        self._record_t()
        self._record_v()

        self.h.run()

        values = np.array(self.h.voltage_soma.to_python())
        time = self._to_array(self.time)

        return time, values, self.info




[docs]    def run_python(self, **parameters):
        """
        Load and run a Python function that contains a Neuron simulation and
        return the model result. The Python neuron simulation is located in
        a function in `path`/`file` and name `name`.

        Parameters
        ----------
        **parameters : A number of named arguments (name=value).
            The parameters of the model which are sent to the Python function.

        Returns
        -------
        time : array
            Time values of the model.
        values : array
            Voltage of the neuron. Note that `values` must either be regular
            (have the same number of points for different parameters) or be able
            to be interpolated.
        info : dictionary
            A dictionary with information needed by features. If a info
            dictionary is returned by the model function it is updated with
            ``"stimulus_start"`` and ``"stimulus_end"`` if they are given as
            parameters to ``NeuronModel``. If a info dictionary is not returned,
            a info dictionary is added as the third return argument.

        Notes
        -----
        Efel features require ``"stimulus_start"`` and ``"stimulus_end"``
        as keys, while spiking_features require ``stimulus_start"``.

        See also
        --------
        uncertainpy.models.Model.run : Requirements for the model run function.
        """

        model = self.load_python(self.path, self.file, self.name)

        result = model(**parameters)

        result = list(result)
        # Update info dict if it exists.
        # Info from the model are prioritized
        if len(result) == 3 and isinstance(result[2], dict):
            tmp_info = self.info.copy()
            tmp_info.update(result[2])

            result[2] = tmp_info

        # Add info if no dict is present
        elif len(result) == 2:
            time, values = result
            result = (time, values, self.info)


        return result



[docs]    def set_parameters(self, parameters):
        """
        Set parameters in the neuron model.

        Parameters
        ----------
        parameters : dict
            A dictionary with parameter names as keys and the parameter value as
            value.
        """
        for parameter in parameters:
            self.h(parameter + " = " + str(parameters[parameter]))



[docs]    def postprocess(self, time, values, info):
        """
        Postprocessing of the time and results from the Neuron model is
        generally not needed. The direct model result except the info
        is returned.

        Parameters
        ----------
        time : array_like
            Time values of the Neuron model.
        values : array_like
            Voltage of the neuron.
        info : dict
            Dictionary with information needed by features.

        Returns
        -------
        time : array_like
            Time values of the Neuron model.
        values : array_like
            Voltage of the neuron.
        """
        return time, values






          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.plotting.plot_uncertainty

from __future__ import absolute_import, division, print_function, unicode_literals

import glob
import os

import matplotlib.pyplot as plt
import numpy as np

from .prettyplot import prettyPlot, prettyBar
from .prettyplot import spines_color, get_current_colormap
from .prettyplot import get_colormap_tableu20, set_style, get_colormap, reset_style
from .prettyplot import axis_grey, labelsize, fontsize, titlesize, linewidth

import seaborn as sns
from ..data import Data
from ..utils.logger import setup_module_logger, get_logger


# TODO compare plots in a grid of all plots,
# such as plotting all features in a grid plot
# TODO Change the use of **plot_kwargs to use a dict for specific plotting commands?



[docs]class PlotUncertainty(object):
    """
    Plotting the results from the uncertainty quantification and sensitivity
    analysis.

    Parameters
    ----------
    filename : {None, str}, optional
        The name of the data file. If given the file is loaded. If None, no file
        is loaded. Default is None.
    folder : str, optional
        The folder where to save the plots. Creates a new folder if it does not
        exist. Default is "figures/".
    figureformat : str, optional
        The format to save the plots in. Given as ".xxx". All formats supported
        by Matplotlib are available. Default is ".png",
    logger_level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logging to file is performed
        Default logger level is "info".

    Attributes
    ----------
    folder : str
        The folder where to save the plots.
    figureformat : str, optional
        The format to save the plots in. Given as ".xxx". All formats
        supported by Matplotlib are available.
    data : Data
        A data object that contains the results from the uncertainty quantification.
        Contains all model and feature values, as well as all calculated
        statistical metrics.
    """
    def __init__(self,
                 filename=None,
                 folder="figures/",
                 figureformat=".png",
                 logger_level="info"):

        self._folder = None

        self.folder = folder
        self.figureformat = figureformat

        self.features_in_combined_plot = 3

        self.data = None

        self._logger_level = logger_level

        if filename is not None:
            self.load(filename)

        setup_module_logger(class_instance=self, level=logger_level)



[docs]    def load(self, filename):
        """
        Load data from a HDF5 or Exdir file with name `filename`.

        Parameters
        ----------
        filename : str
            Name of the file to load data from.
        """
        self.data = Data(filename,
                         logger_level=self._logger_level)



    @property
    def folder(self):
        """
        The folder where to save all plots.

        Parameters
        ----------
        new_folder : str
            Name of new folder where to save all plots. The folder is created
            if it does not exist.
        """
        return self._folder


    @folder.setter
    def folder(self, new_folder):
        self._folder = new_folder

        if new_folder is not None and not os.path.isdir(new_folder):
            os.makedirs(new_folder)




[docs]    def all_evaluations(self, foldername="evaluations"):
        """
        Plot all evaluations for all model and features.

        Parameters
        ----------
        foldername : str, optional
            Name of folder where to save all plots. The folder is created
            if it does not exist. Default folder is named "evaluations".
        """
        for feature in self.data.data:
            self.evaluations(feature=feature, foldername=foldername)



[docs]    def evaluations(self, feature=None, foldername="", **plot_kwargs):
        """
        Plot all evaluations for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        foldername : str, optional
            Name of folder where to save all plots. The folder is created
            if it does not exist. Default folder is named "featurename_evaluations".
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        NotImplementedError
            If the model/feature have more than 2 dimensions.
        AttributeError
            If the dimensions of the evaluations is not valid.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        save_folder = os.path.join(self.folder, foldername)
        if not os.path.isdir(save_folder):
            os.makedirs(save_folder)

        dimension = self.data.ndim(feature)
        if dimension is None:
            logger.warning("No evaluations to plot")
        elif dimension == 0:
            self.evaluations_0d(feature=feature, foldername=foldername, **plot_kwargs)

        elif dimension == 1:
            self.evaluations_1d(feature=feature, foldername=foldername, **plot_kwargs)

        elif dimension == 2:
            self.evaluations_2d(feature=feature, foldername=foldername, **plot_kwargs)

        elif dimension > 2:
            raise NotImplementedError(">2 dimensional plots not implemented.")
        else:
            raise AttributeError("Dimension of evaluations is not valid: dim {}".format(dimension))




[docs]    def evaluations_0d(self, feature=None, foldername="", **plot_kwargs):
        """
        Plot all 0D evaluations for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        foldername : str, optional
            Name of folder where to save all plots. The folder is created
            if it does not exist.Default folder is named "featurename_evaluations".
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the evaluations are not 0 dimensional.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if feature not in self.data or "evaluations" not in self.data[feature]:
            logger.warning("No {} evaluations to plot.".format(feature))
            return

        if self.data.ndim(feature) != 0:
            raise ValueError("{} is not a 0 dimensional feature".format(feature))

        save_folder = os.path.join(self.folder, foldername, feature + "_evaluations")
        if not os.path.isdir(save_folder):
            os.makedirs(save_folder)

        prettyPlot(self.data[feature].evaluations,
                   xlabel=r"Evaluation #number",
                   ylabel=self.data.get_labels(feature)[0],
                   title="{}, evaluations".format(feature.replace("_", " ")),
                   new_figure=True,
                   palette="husl",
                   **plot_kwargs)

        plt.tight_layout()
        plt.savefig(os.path.join(save_folder, "evaluations" + self.figureformat))
        plt.close()

        reset_style()



[docs]    def evaluations_1d(self, feature=None, foldername="", **plot_kwargs):
        """
        Plot all 1D evaluations for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        foldername : str, optional
            Name of folder where to save all plots. The folder is created
            if it does not exist. Default folder is named "featurename_evaluations".
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the evaluations are not 1 dimensional.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if feature not in self.data or "evaluations"  not in self.data[feature]:
            logger.warning("No model evaluations to plot.")
            return

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1 dimensional feature".format(feature))

        save_folder = os.path.join(self.folder, foldername, feature + "_evaluations")
        if not os.path.isdir(save_folder):
            os.makedirs(save_folder)

        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        if not self.data.model_ignore:
            if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
                time = np.arange(0, len(self.data[feature].evaluations[0]))
            else:
                time = self.data[feature].time


        padding = len(str(len(self.data[feature].evaluations) + 1))
        for i, evaluation in enumerate(self.data[feature].evaluations):

            if self.data.model_ignore:
                if self.data[feature].time[i] is None or np.all(np.isnan(self.data[feature].time[i])):
                    time = np.arange(0, len(self.data[feature].evaluations[i]))
                else:
                    time = self.data[feature].time[i]

            ax = prettyPlot(time, evaluation,
                            xlabel=xlabel.capitalize(),
                            ylabel=ylabel.capitalize(),
                            title="{}, evaluation {:d}".format(feature.replace("_", " "), i),
                            new_figure=True,
                            palette="husl",
                            **plot_kwargs)
            ax.set_xlim([min(time), max(time)])
            plt.tight_layout()
            plt.savefig(os.path.join(save_folder,
                                     "evaluation_{0:0{1}d}".format(i, padding) + self.figureformat))
            plt.close()

        reset_style()




[docs]    def evaluations_2d(self, feature=None, foldername="", **plot_kwargs):
        """
        Plot all 2D evaluations for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        foldername : str, optional
            Name of folder where to save all plots. The folder is created
            if it does not exist. Default folder is named
            "featurename_evaluations".
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the evaluations are not 2 dimensional.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if feature not in self.data or "evaluations" not in self.data[feature]:
            logger.warning("No model evaluations to plot.")
            return

        if self.data.ndim(feature) != 2:
            raise ValueError("{} is not a 2 dimensional feature.".format(feature))

        set_style("seaborn-dark")

        save_folder = os.path.join(self.folder, foldername, feature + "_evaluations")
        if not os.path.isdir(save_folder):
            os.makedirs(save_folder)

        labels = self.data.get_labels(feature)
        xlabel, ylabel, zlabel = labels

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature].evaluations[0]))
        else:
            time = self.data[feature].time

        padding = len(str(len(self.data[feature].evaluations) + 1))
        for i, evaluation in enumerate(self.data[feature].evaluations):
            fig = plt.figure()
            ax = fig.add_subplot(111)
            ax.set_title("{}, evaluation {:d}".format(feature.replace("_", " "), i))

            iax = ax.imshow(evaluation, cmap="viridis", aspect="auto",
                            extent=[time[0],
                                    time[-1],
                                    0, evaluation.shape[0]],
                            **plot_kwargs)

            cbar = fig.colorbar(iax)
            cbar.ax.set_ylabel(zlabel)

            ax.set_xlabel(xlabel.capitalize())
            ax.set_ylabel(ylabel.capitalize())
            plt.tight_layout()
            plt.savefig(os.path.join(save_folder,
                                     "evaluation_{0:0{1}d}".format(i, padding) + self.figureformat))
            plt.close()

        reset_style()





[docs]    def attribute_feature_1d(self,
                             feature=None,
                             attribute="mean",
                             attribute_name="mean",
                             hardcopy=True,
                             show=False,
                             **plot_kwargs):
        """
        Plot a 1 dimensional attribute for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        attribute : {"mean", "variance"}, optional
            Attribute to plot, either the mean or variance. Default is "mean".
        attribute_name : str
            Name of the attribute, used as title and name of the plot.
            Default is "mean".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        ValueError
            If the attribute is not a supported attribute, either "mean" or
            "variance".
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1 dimensional feature".format(feature))

        if attribute not in ["mean", "variance"]:
            raise ValueError("{} is not a supported attribute".format(attribute))

        if attribute not in self.data[feature]:
            msg = " Unable to plot {attribute_name}. {attribute_name} of {feature} does not exist."
            logger.warning(msg.format(attribute_name=attribute, feature=feature))
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature][attribute]))
        else:
            time = self.data[feature].time


        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        title = feature + ", " + attribute_name
        ax = prettyPlot(time, self.data[feature][attribute],
                        title.replace("_", " "), xlabel.capitalize(), ylabel.capitalize(),
                        nr_colors=3,
                        palette="husl",
                        **plot_kwargs)

        ax.set_xlim([min(time), max(time)])

        save_name = feature + "_" + attribute_name
        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     save_name + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()




[docs]    def attribute_feature_2d(self,
                             feature=None,
                             attribute="mean",
                             attribute_name="mean",
                             hardcopy=True,
                             show=False,
                             **plot_kwargs):
        """
        Plot a 2 dimensional attribute for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        attribute : {"mean", "variance"}, optional
            Attribute to plot, either the mean or variance. Default is "mean".
        attribute_name : str
            Name of the attribute, used as title and name of the plot.
            Default is "mean".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 2 dimensional.
        ValueError
            If the attribute is not a supported attribute, either "mean" or
            "variance".
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 2:
            raise ValueError("{} is not a 2D feature".format(feature))

        if attribute not in ["mean", "variance"]:
            raise ValueError("{} is not a supported attribute".format(attribute))


        if attribute not in self.data[feature]:
            msg = " Unable to plot {attribute_name}. {attribute_name} of {feature} does not exist."
            logger.warning(msg.format(attribute_name=attribute, feature=feature))
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            extent = None
        else:
            extent=[self.data[feature].time[0], self.data[feature].time[-1],
                    0, self.data[feature][attribute].shape[0]]



        title = feature + ", " + attribute_name
        labels = self.data.get_labels(feature)
        xlabel, ylabel, zlabel = labels

        set_style("seaborn-dark")

        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.set_title(title.replace("_", " "))


        iax = ax.imshow(self.data[feature][attribute], cmap="viridis", aspect="auto",
                        extent=extent,
                        **plot_kwargs)

        cbar = fig.colorbar(iax)
        # cbar.ax.set_title(zlabel)
        cbar.ax.set_ylabel(zlabel)

        ax.set_xlabel(xlabel.capitalize(), fontsize=labelsize)
        ax.set_ylabel(ylabel.capitalize(), fontsize=labelsize)

        save_name = feature + "_" + attribute_name

        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     save_name + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()




[docs]    def mean_1d(self, feature, hardcopy=True, show=False, **plot_kwargs):
        """
        Plot the mean for a specific 1 dimensional model/feature.

        Parameters
        ----------
        feature : str
            The name of the model/feature.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        """
        self.attribute_feature_1d(feature,
                                  attribute="mean",
                                  attribute_name="mean",
                                  hardcopy=hardcopy,
                                  show=show,
                                  color=0,
                                  **plot_kwargs)



[docs]    def variance_1d(self, feature, hardcopy=True, show=False, **plot_kwargs):
        """
        Plot the variance for a specific 1 dimensional model/feature.

        Parameters
        ----------
        feature : str
            The name of the model/feature.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        """
        self.attribute_feature_1d(feature,
                                  attribute="variance",
                                  attribute_name="variance",
                                  hardcopy=hardcopy,
                                  show=show,
                                  color=2,
                                  **plot_kwargs)


[docs]    def mean_2d(self, feature, hardcopy=True, show=False, **plot_kwargs):
        """
        Plot the mean for a specific 2 dimensional model/feature.

        Parameters
        ----------
        feature : str
            The name of the model/feature.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 2 dimensional.
        """
        self.attribute_feature_2d(feature,
                                  attribute="mean",
                                  attribute_name="mean",
                                  hardcopy=hardcopy,
                                  show=show,
                                  **plot_kwargs)



[docs]    def variance_2d(self, feature, hardcopy=True, show=False, **plot_kwargs):
        """
        Plot the variance for a specific 2 dimensional model/feature.

        Parameters
        ----------
        feature : str
            The name of the model/feature.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 2 dimensional.
        """
        self.attribute_feature_2d(feature,
                                  attribute="variance",
                                  attribute_name="variance",
                                  hardcopy=hardcopy,
                                  show=show,
                                  **plot_kwargs)



[docs]    def mean_variance_1d(self,
                         feature=None,
                         new_figure=True,
                         hardcopy=True,
                         show=False,
                         **plot_kwargs):
        """
        Plot the mean and variance for a specific 1 dimensional model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1D feature".format(feature))

        if "mean" not in self.data[feature] or "variance" not in self.data[feature]:
            msg = "Mean and/or variance of {feature} does not exist. ".format(feature=feature) \
                    + "Unable to plot mean and variance"
            logger.warning(msg)
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature].mean))
        else:
            time = self.data[feature].time


        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels


        style="seaborn-white"
        title = feature + ", mean and variance"
        ax = prettyPlot(time, self.data[feature].mean,
                        title.replace("_", " "), xlabel.capitalize(), ylabel.capitalize() + ", mean",
                        style=style,
                        nr_colors=3,
                        palette="husl",
                        **plot_kwargs)


        colors = get_current_colormap()

        ax2 = ax.twinx()
        color = 0
        color_2 = 2

        spines_color(ax2, edges={"top": "None", "bottom": "None",
                                 "right": colors[color_2], "left": "None"})
        ax2.tick_params(axis="y", which="both", right=False, left=False, labelright=True,
                        color=colors[color_2], labelcolor=colors[color_2], labelsize=labelsize)
        ax2.set_ylabel(ylabel.capitalize() + r"$^2$, variance", color=colors[color_2], fontsize=labelsize)

        # ax2.set_ylim([min(self.data.variance[feature]), max(self.data.variance[feature])])

        ax2.plot(time, self.data[feature].variance,
                 color=colors[color_2], linewidth=linewidth, antialiased=True)

        ax2.yaxis.offsetText.set_fontsize(fontsize)
        ax2.yaxis.offsetText.set_color(colors[color_2])

        ax2.spines["right"].set_visible(True)
        ax2.spines["right"].set_edgecolor(colors[color_2])

        ax.tick_params(axis="y", color=colors[color], labelcolor=colors[color])
        ax.spines["left"].set_edgecolor(colors[color])
        ax.set_ylabel(ylabel + ", mean", color=colors[color], fontsize=labelsize)

        ax2.set_xlim([min(time), max(time)])
        ax.set_xlim([min(time), max(time)])


        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     feature + "_mean-variance" + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()

        #
        # if not show or not hardcopy:
        #     return ax, ax2



[docs]    def prediction_interval_1d(self,
                               feature=None,
                               hardcopy=True,
                               show=False,
                               **plot_kwargs):
        """
        Plot the prediction interval for a specific 1 dimensional model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1D feature".format(feature))

        if "mean" not in self.data[feature] \
            or "percentile_5" not in self.data[feature] \
                or "percentile_95" not in self.data[feature]:
            msg = "E, percentile_5  and/or percentile_95 of {feature} does not exist. Unable to plot prediction interval"
            logger.warning(msg.format(feature=feature))
            return


        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature].mean))
        else:
            time = self.data[feature].time


        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        title = feature.replace("_", " ") + ", 90% prediction interval"
        ax = prettyPlot(time, self.data[feature].mean, title=title,
                        xlabel=xlabel.capitalize(), ylabel=ylabel.capitalize(),
                        color=0,
                        nr_colors=3,
                        palette="husl",
                        **plot_kwargs)

        colors = get_current_colormap()
        ax.fill_between(time,
                         self.data[feature].percentile_5,
                         self.data[feature].percentile_95,
                         alpha=0.5, color=colors[0],
                         linewidth=0)

        ax.set_xlim([min(time), max(time)])
        plt.legend(["Mean", "90% prediction interval"], loc="best")

        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     feature + "_prediction-interval" + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()



[docs]    def sensitivity_1d(self,
                       feature=None,
                       sensitivity="first",
                       hardcopy=True,
                       show=False,
                       **plot_kwargs):
        """
        Plot the sensitivity for a specific 1 dimensional model/feature. The
        Sensitivity for each parameter is plotted in sepearate figures.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        logger = get_logger(self)

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, title = self.convert_sensitivity(sensitivity)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1D feature".format(feature))

        if sensitivity not in self.data[feature]:
            msg = "{sensitivity} of {feature} does not exist. Unable to plot {sensitivity}"
            logger.warning(msg.format(sensitivity=sensitivity, feature=feature))
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature][sensitivity][0]))
        else:
            time = self.data[feature].time

        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        for i in range(len(self.data[feature][sensitivity])):
            ax = prettyPlot(time, self.data[feature][sensitivity][i],
                            title=title.capitalize() + ", " + feature.replace("_", " ") + " - " + self.data.uncertain_parameters[i],
                            xlabel=xlabel.capitalize(),
                            ylabel=title.capitalize(),
                            color=i,
                            palette="husl",
                            nr_colors=len(self.data.uncertain_parameters), **plot_kwargs)
            # plt.ylim([0, 1.05])
            ax.set_xlim([min(time), max(time)])

            plt.tight_layout()

            if hardcopy:
                plt.savefig(os.path.join(self.folder,
                                         feature + "_" + sensitivity + "_"
                                         + self.data.uncertain_parameters[i] + self.figureformat))

            if show:
                plt.show()
            else:
                plt.close()

        reset_style()




[docs]    def sensitivity_1d_grid(self,
                            feature=None,
                            sensitivity="first",
                            hardcopy=True,
                            show=False,
                            **plot_kwargs):
        """
        Plot the sensitivity for a specific 1 dimensional model/feature. The
        Sensitivity for each parameter is plotted in the same figure, but
        separate plots.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        logger = get_logger(self)

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, title = self.convert_sensitivity(sensitivity)


        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1D feature".format(feature))

        if sensitivity not in self.data[feature]:
            msg = "{sensitivity} of {feature} does not exist. Unable to plot {sensitivity}"
            logger.warning(msg.format(sensitivity=sensitivity, feature=feature))
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature][sensitivity][0]))
        else:
            time = self.data[feature].time

        parameter_names = self.data.uncertain_parameters

        # get size of the grid in x and y directions
        nr_plots = len(parameter_names)
        grid_size = np.ceil(np.sqrt(nr_plots))
        grid_x_size = int(grid_size)
        grid_y_size = int(np.ceil(nr_plots/float(grid_x_size)))

        set_style("seaborn-darkgrid")
        fig, axes = plt.subplots(nrows=grid_y_size, ncols=grid_x_size, squeeze=False, sharex="col", sharey="row")

        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        # Add a larger subplot to use to set a common xlabel and ylabel
        set_style("seaborn-white")
        ax = fig.add_subplot(111, zorder=-10)
        spines_color(ax, edges={"top": "None", "bottom": "None",
                                "right": "None", "left": "None"})
        ax.tick_params(labelcolor="w", top=False, bottom=False, left=False, right=False)
        ax.set_xlabel(xlabel.capitalize(), labelpad=8)
        ax.set_ylabel(title.capitalize())

        for i in range(0, grid_x_size*grid_y_size):
            nx = i % grid_x_size
            ny = int(np.floor(i/float(grid_x_size)))

            ax = axes[ny][nx]

            if i < nr_plots:
                prettyPlot(time, self.data[feature][sensitivity][i],
                           title=parameter_names[i],
                           color=i,
                           nr_colors=nr_plots,
                           ax=ax,
                           palette="husl",
                           **plot_kwargs)

                # for tick in ax.get_xticklabels():
                #     tick.set_rotation(-30)

                ax.set_ylim([0, 1.05])
                ax.set_xlim([min(time), max(time)])
                # ax.set_xticklabels(xlabels, fontsize=labelsize, rotation=0)
                ax.tick_params(labelsize=10)
            else:
                ax.set_axis_off()

        title = title.capitalize() + ", " + feature.replace("_", " ")
        plt.suptitle(title, fontsize=titlesize)
        plt.tight_layout()
        plt.subplots_adjust(top=0.9)


        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     feature + "_" + sensitivity + "_grid" + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()




[docs]    def sensitivity_1d_combined(self,
                                feature=None,
                                sensitivity="first",
                                hardcopy=True,
                                show=False,
                                **plot_kwargs):
        """
        Plot the sensitivity for a specific 1 dimensional model/feature. The
        Sensitivity for each parameter is plotted in the same plot.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        logger = get_logger(self)

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, title = self.convert_sensitivity(sensitivity)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature is None:
            feature = self.data.model_name

        if self.data.ndim(feature) != 1:
            raise ValueError("{} is not a 1D feature".format(feature))

        if sensitivity not in self.data[feature]:
            msg = "{sensitivity} of {feature} does not exist. Unable to plot {sensitivity}"
            logger.warning(msg.format(sensitivity=sensitivity, feature=feature))
            return

        if self.data[feature].time is None or np.all(np.isnan(self.data[feature].time)):
            time = np.arange(0, len(self.data[feature][sensitivity][0]))
        else:
            time = self.data[feature].time


        labels = self.data.get_labels(feature)
        xlabel, ylabel = labels

        for i in range(len(self.data[feature][sensitivity])):
            prettyPlot(time,
                       self.data[feature][sensitivity][i],
                       title=title.capitalize() + ", " + feature.replace("_", " "),
                       xlabel=xlabel.capitalize(),
                       ylabel=title.capitalize(),
                       new_figure=False,
                       color=i,
                       palette="husl",
                       nr_colors=len(self.data.uncertain_parameters),
                       label=self.data.uncertain_parameters[i],
                       **plot_kwargs)

        plt.ylim([0, 1.05])
        plt.xlim([min(time), max(time)])
        if len(self.data[feature][sensitivity]) > 4:
            plt.xlim([time[0], 1.3*time[-1]])

        plt.legend()
        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     feature + "_" + sensitivity + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()



[docs]    def features_1d(self, sensitivity="first"):
        """
        Plot all data for all 1 dimensional model/features.

        For each model/feature plots ``mean_1d``, ``variance_1d``,
        ``mean_variance_1d``, and ``prediction_interval_1d``. If sensitivity
        also plot ``sensitivity_1d``, ``sensitivity_1d_combined``, and
        ``sensitivity_1d_grid``.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total", None}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. If None, no sensitivity is plotted. Default is
            "first".

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 1 dimensional.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            "total" or None.

        See also
        --------
        uncertainpy.plotting.PlotUncertainty.mean_1d
        uncertainpy.plotting.PlotUncertainty.variance_1d
        uncertainpy.plotting.PlotUncertainty.mean_variance_1d
        uncertainpy.plotting.PlotUncertainty.prediction_interval_1d
        uncertainpy.plotting.PlotUncertainty.sensitivity_1d
        uncertainpy.plotting.PlotUncertainty.sensitivity_1d_combined
        uncertainpy.plotting.PlotUncertainty.sensitivity_1d_grid
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total", None]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total or None, not {}".format(sensitivity))

        sensitivity, label = self.convert_sensitivity(sensitivity)

        for feature in self.data:
            if self.data.ndim(feature) == 1:
                self.mean_1d(feature=feature)
                self.variance_1d(feature=feature)
                self.mean_variance_1d(feature=feature)
                self.prediction_interval_1d(feature=feature)

                if sensitivity in self.data[feature]:
                    self.sensitivity_1d(feature=feature, sensitivity=sensitivity)
                    self.sensitivity_1d_combined(feature=feature, sensitivity=sensitivity)
                    self.sensitivity_1d_grid(feature=feature, sensitivity=sensitivity)




[docs]    def convert_sensitivity(self, sensitivity):
        """
        Convert a sensitivity str to the correct sensitivity attribute, and a
        full name.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total", None}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices.

        Returns
        -------
        sensitivity : str
            Name of the sensitivity attribute. Either sobol_first",
            "sobol_total", or the unchanged input.
        full_text : str
            Complete name of the sensitivity. Either "", or
            "first order Sobol indices" or "total order Sobol indices".
        """
        if sensitivity == "first":
            sensitivity = "sobol_first"
        elif sensitivity == "total":
            sensitivity = "sobol_total"

        full_text = ""
        if sensitivity == "sobol_first":
            full_text = "first order Sobol indices"
        elif sensitivity == "sobol_total":
            full_text = "total order Sobol indices"

        return sensitivity, full_text



[docs]    def features_2d(self):
        """
        Plot all implemented plots for all 2 dimensional model/features.
        For each model/feature plots ``mean_2d``, and ``variance_2d``.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        for feature in self.data:
            if self.data.ndim(feature) == 2:
                self.mean_2d(feature=feature)
                self.variance_2d(feature=feature)



    # TODO not finished, missing correct label placement
    # TODO test that plotting with no sensitivity works
[docs]    def feature_0d(self,
                   feature,
                   sensitivity="first",
                   hardcopy=True,
                   show=False,
                   max_legend_size=5):
        """
        Plot all attributes (mean, variance, p_05, p_95 and sensitivity of it
        exists) for a 0 dimensional model/feature.

        Parameters
        ----------
        feature : {None, str}, optional
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        sensitivity : {"sobol_first", "first", "sobol_total", "total", None}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. If None, no sensitivity is plotted. Default is
            "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        max_legend_size : int, optional
            The max number of legends in a row. Default is 5.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If the model/feature is not 0 dimensional.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            "total" or None.
        """
        logger = get_logger(self)

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total", None]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total or None, not {}".format(sensitivity))


        sensitivity, label = self.convert_sensitivity(sensitivity)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if self.data.ndim(feature) != 0:
            raise ValueError("{} is not a 0D feature".format(feature))

        for data_type in ["mean", "variance", "percentile_5", "percentile_95"]:
            if data_type not in self.data[feature]:
                msg = "{data_type} for {feature} does not exist. Unable to plot."
                logger.warning(msg.format(data_type=data_type,feature=feature))
                return

        if len(self.data.uncertain_parameters) > max_legend_size:
            legend_size = max_legend_size
        else:
            legend_size = len(self.data.uncertain_parameters)

        legend_width = np.ceil(len(self.data.uncertain_parameters)/float(max_legend_size))

        width = 0.2
        distance = 0.5

        xlabels = ["Mean", "Variance", "$P_5$", "$P_{95}$"]
        xticks = [0, width, distance + width, distance + 2*width]

        values = [self.data[feature].mean, self.data[feature].variance,
                  self.data[feature].percentile_5, self.data[feature].percentile_95]

        ylabel = self.data.get_labels(feature)[0]

        ax = prettyBar(values,
                       index=xticks,
                       xlabels=xlabels,
                       ylabel=ylabel.capitalize(),
                       palette="Paired",
                       style="seaborn-white")

        if sensitivity in self.data[feature]:
            pos = 2*distance + 2*width

            ax2 = ax.twinx()

            spines_color(ax2, edges={"top": "None", "bottom": "None",
                                     "right": axis_grey, "left": "None"})
            ax2.tick_params(axis="y", which="both", right=True, left=False, labelright=True,
                            color=axis_grey, labelcolor="black", labelsize=labelsize)
            ax2.set_ylabel(label.capitalize(), fontsize=labelsize)
            ax2.set_ylim([0, 1.05])


            ax2.spines["right"].set_visible(True)
            ax2.spines["right"].set_edgecolor(axis_grey)


            i = 0
            legend_bars = []
            colors = get_colormap(palette="husl", nr_colors=len(self.data.uncertain_parameters))

            for parameter in self.data.uncertain_parameters:

                l = ax2.bar(pos, self.data[feature][sensitivity][i], width=width,
                            align="center", color=colors[i], linewidth=0)

                legend_bars.append(l)

                i += 1
                pos += width

            xticks.append(pos - (i/2. + 0.5)*width)
            xlabels.append(sensitivity.split("_")[0] + " " + sensitivity.split("_")[1])

            location = (0.5, 1.01 + legend_width*0.095)
            plt.legend(legend_bars,
                       self.data.uncertain_parameters,
                       loc="upper center",
                       bbox_to_anchor=location,
                       ncol=legend_size)

            # lgd.get_frame().set_edgecolor(axis_grey)

            fig = plt.gcf()
            fig.subplots_adjust(top=(0.91 - legend_width*0.053))


        ax.set_xticks(xticks)
        ax.set_xticklabels(xlabels, fontsize=labelsize, rotation=0)

        if len(self.data.uncertain_parameters) > 3:
            for tick in ax.get_xticklabels()[:2]:
                tick.set_rotation(-25)


        plt.suptitle(feature.replace("_", " "), fontsize=titlesize)

        if sensitivity is None or sensitivity not in self.data[feature]:
            plt.subplots_adjust(top=0.93)

        if sensitivity is None:
            save_name = feature + self.figureformat
        else:
            save_name = feature + "_" + sensitivity + self.figureformat

        if hardcopy:
            plt.savefig(os.path.join(self.folder, save_name))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()


        # return ax


[docs]    def average_sensitivity(self,
                            feature,
                            sensitivity="first",
                            hardcopy=True,
                            show=False):
        """
        Plot the average of the sensitivity for a specific model/feature.

        Parameters
        ----------
        feature : {None, str}
            The name of the model/feature. If None, the name of the model is
            used. Default is None.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        ValueError
            If feature does not exist.
        """
        logger = get_logger(self)

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, title = self.convert_sensitivity(sensitivity)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if feature not in self.data:
            raise ValueError("{} is not a feature".format(feature))

        if sensitivity + "_average" not in self.data[feature]:
            msg = "{sensitivity}_average of {feature} does not exist. Unable to plot {sensitivity}_average."
            logger.warning(msg.format(sensitivity=sensitivity, feature=feature))
            return

        width = 0.2

        index = np.arange(1, len(self.data.uncertain_parameters)+1)*width

        prettyBar(self.data[feature][sensitivity + "_average"],
                  title="Average of " + title + ", " + feature.replace("_", " "),
                  xlabels=self.data.uncertain_parameters,
                  ylabel="Average of " + title,
                  nr_colors=len(self.data.uncertain_parameters),
                  palette="husl",
                  index=index,
                  style="seaborn-darkgrid")


        plt.ylim([0, 1])

        save_name = feature + "_" + sensitivity + "_average" + self.figureformat

        plt.tight_layout()

        if hardcopy:
            plt.savefig(os.path.join(self.folder, save_name))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()



[docs]    def average_sensitivity_all(self,
                                sensitivity="first",
                                hardcopy=True,
                                show=False):
        """
        Plot the average of the sensitivity for all model/features.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))


        sensitivity, title = self.convert_sensitivity(sensitivity)

        for feature in self.data:
            if sensitivity + "_average" in self.data[feature]:
                self.average_sensitivity(feature=feature,
                                         sensitivity=sensitivity,
                                         hardcopy=hardcopy,
                                         show=show)



[docs]    def features_0d(self, sensitivity="first", hardcopy=True, show=False):
        """
        Plot the results for all 0 dimensional model/features.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        for feature in self.data:
            if self.data.ndim(feature) == 0:
                self.feature_0d(feature, sensitivity=sensitivity, hardcopy=hardcopy, show=show)




    # # TODO Not Tested
    # def plot_folder(self, data_dir):
    #     self.logger.info("Plotting all data in folder")

    #     for f in glob.glob(os.path.join(data_dir, "*")):
    #         self.load(f.split(os.path.sep)[-1])

    #         self.plot_all()


    # def plot_allNoSensitivity(self, sensitivity="first"):
    #     if self.data is None:
    #         raise ValueError("Datafile must be loaded.")
    #
    #
    #     self.features_1d(sensitivity=sensitivity)
    #     self.features_0d(sensitivity=sensitivity)


[docs]    def plot_all(self, sensitivity="first"):
        """
        Plot the results for all model/features, with the chosen sensitivity.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total", None}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. If None, no sensitivity is plotted.
            Default is "first".

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            "total", or None.
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        self.features_2d()
        self.features_1d(sensitivity=sensitivity)
        self.features_0d(sensitivity=sensitivity)

        if sensitivity is not None:
            self.average_sensitivity_all(sensitivity=sensitivity)
            self.average_sensitivity_grid(sensitivity=sensitivity)




    # TODO find a more descriptive name
[docs]    def plot_all_sensitivities(self):
        """
        Plot the results for all model/features, with all sensitivities.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        """
        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        self.plot_all(sensitivity="first")

        for feature in self.data:
            if self.data.ndim(feature) == 1:
                self.sensitivity_1d(feature=feature, sensitivity="total")
                self.sensitivity_1d_combined(feature=feature, sensitivity="total")
                self.sensitivity_1d_grid(feature=feature, sensitivity="total")

        self.features_0d(sensitivity="total")

        self.average_sensitivity_all(sensitivity="total")
        self.average_sensitivity_grid(sensitivity="total")



[docs]    def plot_condensed(self, sensitivity="first"):
        """
        Plot the subset of data that shows all information in the most concise
        way, with the chosen sensitivity.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. If None, no sensitivity is plotted.
            Default is "first".

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            "total", or None.
        """
        if sensitivity not in ["sobol_first", "first", "sobol_total", "total", None]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, _ = self.convert_sensitivity(sensitivity)

        for feature in self.data:
            if self.data.ndim(feature) == 1:
                self.mean_variance_1d(feature=feature)
                self.prediction_interval_1d(feature=feature)

                if sensitivity in self.data[feature]:
                    self.sensitivity_1d_grid(feature=feature, sensitivity=sensitivity)

        self.features_0d(sensitivity=sensitivity)
        self.features_2d()

        if sensitivity is not None:
            self.average_sensitivity_grid(sensitivity=sensitivity)





[docs]    def plot(self, condensed=True, sensitivity="first"):
        """
        Plot the subset of data that shows all information in the most concise
        way, with the chosen sensitivity.

        Parameters
        ----------
        condensed : bool, optional
            If the results should be plotted in the most concise way. If not, all
            plots are created. Default is True.
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. If None, no sensitivity is plotted.
            Default is "first".

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            "total", or None.
        """
        if condensed:
            self.plot_condensed(sensitivity=sensitivity)
        else:
            if sensitivity is "all":
                self.plot_all_sensitivities()
            else:
                self.plot_all(sensitivity)



[docs]    def average_sensitivity_grid(self,
                             sensitivity="first",
                             hardcopy=True,
                             show=False,
                             **plot_kwargs):
        """
        Plot the average of the sensitivity for all model/features in
        their own plots in the same figure.

        Parameters
        ----------
        sensitivity : {"sobol_first", "first", "sobol_total", "total"}, optional
            Which Sobol indices to plot. "sobol_first" and "first" is the first
            order Sobol indices, while "sobol_total" and "total" are the total
            order Sobol indices. Default is "first".
        hardcopy : bool, optional
            If the plot should be saved to file. Default is True.
        show : bool, optional
            If the plot should be shown on screen. Default is False.
        **plot_kwargs, optional
            Matplotlib plotting arguments.

        Raises
        ------
        ValueError
            If a Datafile is not loaded.
        ValueError
            If sensitivity is not one of "sobol_first", "first", "sobol_total",
            or "total".
        """
        logger = get_logger(self)

        if self.data is None:
            raise ValueError("Datafile must be loaded.")

        if sensitivity not in ["sobol_first", "first", "sobol_total", "total"]:
            raise ValueError("Sensitivity must be either: sobol_first, first, sobol_total, total, not {}".format(sensitivity))

        sensitivity, title = self.convert_sensitivity(sensitivity)

        no_sensitivity = True
        for feature in self.data:
            if sensitivity + "_average" in self.data[feature]:
                no_sensitivity = False

        if no_sensitivity:
            msg = "All {sensitivity}_averages are missing. Unable to plot {sensitivity}_average_grid"
            logger.warning(msg.format(sensitivity=sensitivity))
            return

        # get size of the grid in x and y directions
        nr_plots = len(self.data)
        grid_size = np.ceil(np.sqrt(nr_plots))
        grid_x_size = int(grid_size)
        grid_y_size = int(np.ceil(nr_plots/float(grid_x_size)))

        # plt.close("all")

        set_style("seaborn-dark")
        fig, axes = plt.subplots(nrows=grid_y_size, ncols=grid_x_size, squeeze=False, sharex="col", sharey="row")
        set_style("seaborn-white")


        # Add a larger subplot to use to set a common xlabel and ylabel

        ax = fig.add_subplot(111, zorder=-10)
        spines_color(ax, edges={"top": "None", "bottom": "None",
                                "right": "None", "left": "None"})
        ax.tick_params(labelcolor="w", top=False, bottom=False, left=False, right=False)
        ax.set_xlabel("Parameters")
        ax.set_ylabel("Average of " + title)

        width = 0.2
        index = np.arange(1, len(self.data.uncertain_parameters)+1)*width

        features = list(self.data.keys())
        for i in range(0, grid_x_size*grid_y_size):
            nx = i % grid_x_size
            ny = int(np.floor(i/float(grid_x_size)))

            ax = axes[ny][nx]


            if i < nr_plots:
                if sensitivity + "_average" not in self.data[features[i]]:
                    msg = " Unable to plot {sensitivity}_average_grid. {sensitivity}_average of {feature} does not exist."
                    logger.warning(msg.format(sensitivity=sensitivity,
                                              feature=features[i]))
                    ax.set_axis_off()
                    continue

                prettyBar(self.data[features[i]][sensitivity + "_average"],
                          title=features[i].replace("_", " "),
                          xlabels=self.data.uncertain_parameters,
                          nr_colors=len(self.data.uncertain_parameters),
                          index=index,
                          palette="husl",
                          ax=ax,
                          **plot_kwargs)


                for tick in ax.get_xticklabels():
                    tick.set_rotation(-30)

                ax.set_ylim([0, 1.05])
                # ax.set_xticklabels(xlabels, fontsize=labelsize, rotation=0)
                ax.tick_params(labelsize=fontsize)
            else:
                ax.set_axis_off()

        title = "Average of " + title
        plt.suptitle(title, fontsize=titlesize)
        plt.tight_layout()
        plt.subplots_adjust(top=0.88)


        if hardcopy:
            plt.savefig(os.path.join(self.folder,
                                     sensitivity + "_average_grid" + self.figureformat))

        if show:
            plt.show()
        else:
            plt.close()

        reset_style()




# if __name__ == "__main__":
#     parser = argparse.ArgumentParser(description="Plot data")
#     parser.add_argument("-d", "--data_dir",
#                         help="Directory the data is stored in", default="data")
#     parser.add_argument("-o", "--folder",
#                         help="Folders to find compare files", default="figures")

#     args = parser.parse_args()

#     figureformat = ".png"




          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.utils.logger

from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import logging.config
import os
import tqdm
import sys
import threading
import multiprocess
import traceback
import queue


[docs]class MyFormatter(logging.Formatter):
    """
    The logging formater.
    """
    # debug_format = "%(levelname)s - %(name)s - %(module)s - %(filename)s - %(lineno)d - %(message)s"
    # info_format = "%(message)s"
    # warning_format = "%(levelname)s - %(message)s"
    # error_format = "%(levelname)s - %(module)s - %(filename)s - %(lineno)d - %(message)s"

    debug_format = "%(levelname)s - %(name)s - %(funcName)s  - %(lineno)d - %(message)s"
    info_format = "%(message)s"
    warning_format = "%(levelname)s - %(message)s"
    error_format = "%(levelname)s - %(module)s - %(filename)s - %(lineno)d - %(message)s"
    critical_format = "%(levelname)s - %(name)s - %(funcName)s - %(lineno)d - %(message)s"


    debug_fmt = logging.Formatter(debug_format)
    info_fmt = logging.Formatter(info_format)
    warning_fmt = logging.Formatter(warning_format)
    error_fmt = logging.Formatter(error_format)
    critical_fmt = logging.Formatter(critical_format)


    def __init__(self, fmt="%(levelno)s: %(msg)s"):
        super(MyFormatter, self).__init__(fmt)


[docs]    def format(self, record):
        if record.levelno == logging.DEBUG:
            return self.debug_fmt.format(record)
        elif record.levelno == logging.INFO:
            return self.info_fmt.format(record)
        elif record.levelno == logging.WARNING:
            return self.warning_fmt.format(record)
        elif record.levelno == logging.ERROR:
            return self.error_fmt.format(record)
        elif record.levelno == logging.CRITICAL:
            return self.critical_fmt.format(record)




[docs]class TqdmLoggingHandler(logging.StreamHandler):
    """
    Set logging so logging to  stream works with Tqdm,
    logging now uses tqdm.write.
    """
[docs]    def emit(self, record):
        msg = self.format(record)
        tqdm.tqdm.write(msg)




[docs]class MultiprocessLoggingHandler(logging.Handler):
    """
    Adapted from:
    https://stackoverflow.com/questions/641420/how-should-i-log-while-using-multiprocessing-in-python
    """
    def __init__(self, filename, mode):
        logging.Handler.__init__(self)

        self.handler = logging.FileHandler(filename, mode)
        manager = multiprocess.Manager()
        self.queue = manager.Queue(-1)
        # self.queue = multiprocess.Queue(-1)

        self.is_closed = False

        self.t = threading.Thread(target=self.receive)
        self.t.daemon = True
        self.t.start()


[docs]    def setFormatter(self, fmt):
        logging.Handler.setFormatter(self, fmt)
        self.handler.setFormatter(fmt)



    def receive(self):
        # while True:
        while not (self.is_closed and self.queue.empty()):
            try:
                record = self.queue.get()
                self.handler.emit(record)
            except (KeyboardInterrupt, SystemExit):
                raise
            except EOFError:
                break
            except queue.Empty:
                pass # This periodically checks if the logger is closed.
            except:
                traceback.print_exc(file=sys.stderr)

        # self.queue.close()
        # self.queue.join_thread()

    def send(self, s):
        self.queue.put_nowait(s)


    def _format_record(self, record):
        # ensure that exc_info and args
        # have been stringified.  Removes any chance of
        # unpickleable things inside and possibly reduces
        # message size sent over the pipe
        if record.args:
            record.msg = record.msg % record.args
            record.args = None
        if record.exc_info:
            dummy = self.format(record)
            record.exc_info = None

        return record

[docs]    def emit(self, record):
        try:
            s = self._format_record(record)
            self.send(s)
        except (KeyboardInterrupt, SystemExit):
            raise
        except:
            self.handleError(record)


[docs]    def close(self):
        if not self.is_closed:
            self.is_closed = True

            self.t.join(5.0)
            self.handler.close()
            logging.Handler.close(self)




# Adapted from Logger.hasHandlers()
[docs]def has_handlers(logger):
    """
    See if this logger has any handlers configured.

    Loop through all handlers for this logger and its parents in the
    logger hierarchy. Return True if a handler was found, else False.
    Stop searching up the hierarchy whenever a logger with the "propagate"
    attribute set to zero is found - that will be the last logger which
    is checked for the existence of handlers.

    Returns
    -------
    bool
        True if the logger or any parent logger has handlers attached.
    """
    current_logger = logger
    has_handler = False
    while current_logger:
        if current_logger.handlers:
            has_handler = True
            break
        if not current_logger.propagate:
            break
        else:
            current_logger = current_logger.parent
    return has_handler



[docs]def get_logger(class_instance):
    """
    Get a logger with name given from `class_instance`:
    ``class_instance.__module__ + "." +  class_instance.__class__.__name__.``

    Parameters
    ----------
    class_instance : instance
        Class instance used to get the logger name.

    Returns
    -------
    logger : Logger object
        The logger object.
    """
    return logging.getLogger(class_instance.__module__ + "." +  class_instance.__class__.__name__)



[docs]def setup_module_logger(class_instance, level="info"):
    """
    Create a logger with a name from the current class. "uncertainpy." is added
    to the beginning of the name if the module name does not start with
    "uncertainpy.". If no handlers, adds handlers to the logger named uncertainpy.

    Parameters
    ----------
    class_instance : instance
        Class instance used to set the logger name.
        ``class_instance.__module__ + "." +  class_instance.__class__.__name__.``
    level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logger level is set. Setting
        logger level overwrites the logger level set from configuration file.
        Default logger level is "info".
    """
    if level is None:
        return

    name = class_instance.__module__ + "." +  class_instance.__class__.__name__

    if not name.startswith("uncertainpy."):
        name = "uncertainpy." + name

    setup_logger(name, level=level)

    add_screen_handler()




[docs]def setup_logger(name, level="info"):
    """
    Create a logger with `name`.

    Parameters
    ----------
    name : str
        Name of the logger
    level : {"info", "debug", "warning", "error", "critical", None}, optional
        Set the threshold for the logging level. Logging messages less severe
        than this level is ignored. If None, no logger is set up. Default
        logger level is info.
    """
    if level is None:
        return

    logger = logging.getLogger(name)

    numeric_level = getattr(logging, level.upper(), None)
    if not isinstance(numeric_level, int):
        raise ValueError('Invalid log level: %s' % level)

    logger.setLevel(numeric_level)




[docs]def add_screen_handler(name="uncertainpy"):
    """
    Adds a logging to console (a console handler) to logger with `name`, if no screen handler already
    exists for the given logger.

    Parameters
    ----------
    name : str, optional
        Name of the logger. Default name is "uncertainpy".
    """
    logger = logging.getLogger(name)

    handler_exists = False
    for handler in logger.handlers:
        if isinstance(handler, TqdmLoggingHandler):
            handler_exists = True
            break

    if not handler_exists:
        console = TqdmLoggingHandler()
        console.setFormatter(MyFormatter())

        logger.addHandler(console)



[docs]def add_file_handler(name="uncertainpy", filename="uncertainpy.log"):
    """
    Add file handler to logger with `name`, if no file handler already
    exists for the given logger.

    Parameters
    ----------
    name : str, optional
        Name of the logger. Default name is "uncertainpy".
    filename : str
        Name of the logfile. If None, no logging to file is performed. Default is
        "uncertainpy.log".
    """
    logger = logging.getLogger(name)

    if filename is not None:
        handler_exists = False
        for handler in logger.handlers:
            if isinstance(handler, MultiprocessLoggingHandler):
                handler_exists = True
                file_handler = handler
                break

        if not handler_exists:
            multiprocess_file = MultiprocessLoggingHandler(filename=filename, mode="w")
            multiprocess_file.setFormatter(MyFormatter())

            logger.addHandler(multiprocess_file)

        else:
            current_dir = os.getcwd()
            old_filename = file_handler.handler.baseFilename.strip(current_dir)

            if old_filename != filename:
                # file_handler.close()
                logger.removeHandler(file_handler)

                multiprocess_file = MultiprocessLoggingHandler(filename=filename, mode="w")
                multiprocess_file.setFormatter(MyFormatter())

                logger.addHandler(multiprocess_file)




# def add_handlers(name="uncertainpy", filename="uncertainpy.log"):
#     """


#     Parameters
#     ----------
#     name : str
#         Name of the logger
#     level : {"info", "debug", "warning", "error", "critical", None}, optional
#         Set the threshold for the logging level. Logging messages less severe
#         than this level is ignored. If None, no logging is performed.
#         Default logger level is "info".
#     filename : str
#         Name of the logfile. If None, no logging to file is performed. Default is
#         "uncertainpy.log".
#     """
#     add_screen_handler(name=name)
#     add_file_handler(name=name, filename=filename)




          

      

      

    

  

    
      
          
            
  Source code for uncertainpy.utils.utility

from __future__ import absolute_import, division, print_function, unicode_literals

import six
import warnings
import numpy as np


[docs]def set_nan(values, index):
    """
    Set the index of a arbitrarly nested list to nan

    Parameters
    ----------
    values : array_like, list, number
        Values where to set  index to ``numpy.nan``. Can be irregular and have
        any number of nested elements.
    index : array_like, list, number
        Index where to set `values` to ``numpy.nan``.
    """
    if hasattr(index, "__iter__"):
        if(len(index) == 1):
            values[index[0]] = np.nan
        else:
            set_nan(values[index[0]], index[1:])
    else:
        values[index] = np.nan




[docs]def none_to_nan(values):
    """
    Converts ``None`` values in `values` to ``np.nan``.

    Parameters
    ----------
    values : array_like, list, number
        Values where to convert occurrences of ``None`` converted to ``np.nan``.
        Can be irregular and have any number of nested elements.

    Returns
    -------
    values : array_like, list, number
        `values` with all occurrences of ``None`` converted to ``np.nan``.
    """
    if values is None:
        values = np.nan
    elif isinstance(values, six.string_types):
        pass

    elif isinstance(values, np.ndarray):
        if values.dtype == "object":
            try:
                return values.astype(float)
            except ValueError:
                for i, value in enumerate(values):
                    values[i] = none_to_nan(value)
        else:
            return values

    elif hasattr(values, "__iter__"):
        try:
            values_array = np.array(values, dtype=float)
            indices = np.argwhere(np.isnan(values_array))

            for idx in indices:
                set_nan(values, idx)

        except ValueError:
            for i, value in enumerate(values):
                values[i] = none_to_nan(value)

    return values



[docs]def contains_nan(values):
    """
    Checks if ``None`` or ``numpy.nan`` exists in `values`. Returns ``True`` if
    any there are at least one occurrence of ``None`` or ``numpy.nan``.

    Parameters
    ----------
    values : array_like, list, number
        `values` where to check for occurrences of ``None`` or ``np.nan``.
        Can be irregular and have any number of nested elements.

    Returns
    -------
    bool
        ``True`` if `values` has at least one occurrence of ``None`` or
        ``numpy.nan``.
    """
    # To speed up we first try the fast option np.any(np.isnan(values))
    try:
        return np.any(np.isnan(values))
    except (ValueError, TypeError):
        if values is None or values is np.nan:
            return True
        # To solve the problem of float/int as well as numpy int/flaot
        elif np.isscalar(values) and np.isnan(values):
            return True
        elif hasattr(values, "__iter__"):
            for value in values:
                if contains_nan(value):
                    return True

            return False
        else:
            return False




# Not working, but currently not needed
# def only_none_or_nan(values):
#     """
#     Checks if `values` only contains``None`` and/or ``numpy.nan``. Returns
#     ``True`` if `values` only contains``None`` and/or ``numpy.nan``.

#     Parameters
#     ----------
#     values : array_like, list, number
#         `values` where to check for occurrences of ``None`` or ``np.nan``.
#         Can be irregular and have any number of nested elements.

#     Returns
#     -------
#     bool
#         ``True`` if `values`  only contains ``None`` and/or ``numpy.nan``.
#     """
#     # To speed up we first try the fast option np.all(np.isnan(values))
#     try:
#         return np.all(np.isnan(values))
#     except (ValueError, TypeError):
#         print "valies", values
#         if hasattr(values, "__iter__"):
#             for value in values:
#                 if not only_none_or_nan(value):
#                     return True

#             return False
#         # To solve the problem of numpy float and int
#         elif np.isscalar(values) and not np.isnan(values):
#             return False
#         elif values is not None and values is not np.nan:
#             return False

#         else:
#             return True




[docs]def lengths(values):
    """
    Get the lengths of a list and all its sublists.

    Parameters
    ----------
    values : list
        List where we want to find the lengths of the list and all sublists.

    Returns
    -------
    list
        A list with the lengths of the list and all sublists.
    """
    lengths = []

    def recursive_len(values, lengths):
        if hasattr(values, "__iter__"):
            lengths.append(len(values))

            for value in values:
                recursive_len(value, lengths)

    recursive_len(values, lengths)

    return lengths





[docs]def is_regular(values):
    """
    Test if `values` is regular or not, meaning it has a varying length of
    nested elements.

    Parameters
    ----------
    values : array_like, list, number
        `values` to check if it is regular or not, meaning it has a varying
        length of nested elements.

    Returns
    -------
    bool
        True if the feature is regular or False if the feature is irregular.

    Notes
    -----
    Does not ignore ``numpy.nan``, so ``[numpy.nan, [1, 2]]`` returns False.
    """

    try:
        np.array(values, dtype=float)
    except ValueError:
        return False

    return True





###################
# Not used anymore
###################

# def none_to_nan_regularize(values):
#     """
#     Converts None values in `values` to a arrays of numpy.nan.

#     If `values` is a 2 dimensional or above array, each instance of None is converted to an
#     array of numpy.nan of the correct shape, which makes the array regular.


#     Parameters
#     ----------
#     values : array_like
#         Result from model or features. Can be of any dimensions.

#     Returns
#     -------
#     array
#         Array with all None converted to arrays of NaN of the correct shape.


#     Examples
#     --------
#     >>> from uncertainpy import Parallel
#     >>> parallel = Parallel()
#     >>> U_irregular = np.array([None, np.array([None, np.array([1, 2, 3]), None, np.array([1, 2, 3])])])
#     >>> result = parallel.none_to_nan(U_irregular)
#         array([[[ nan,  nan,  nan],
#                 [ nan,  nan,  nan],
#                 [ nan,  nan,  nan],
#                 [ nan,  nan,  nan]],
#                 [[ nan,  nan,  nan],
#                 [  1.,   2.,   3.],
#                 [ nan,  nan,  nan],
#                 [  1.,   2.,   3.]]])
#     """
#     warnings.warn(
#         "regularize_nan_results is no longer used as nan results no longer are required to be regular.",
#         DeprecationWarning
#     )

#     is_array = False
#     if isinstance(values, np.ndarray):
#         is_array = True
#         values = values.tolist()

#     if values is None:
#         values = np.nan
#     # elif hasattr(values, "__iter__") and len(values) == 0:
#     #     values_list = np.nan
#     else:
#         # To handle the special case of 0d arrays,
#         # which have an __iter__, but cannot be iterated over
#         try:
#             for i, value in enumerate(values):
#                 if hasattr(value, "__iter__"):
#                     values[i] = none_to_nan_regularize(value)

#             fill = np.nan
#             for i, value in enumerate(values):
#                 if value is not None:
#                     fill = np.full(np.shape(values[i]), np.nan, dtype=float).tolist()
#                     break

#             for i, value in enumerate(values):
#                 if value is None:
#                     values[i] = fill

#         except TypeError:
#             if is_array:
#                 value = np.array(values)

#             return values

#     if is_array:
#         value = np.array(values)

#     return values
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